The classification of weighted projective spaces
Fundamenta Mathematicae, Tome 220 (2013) no. 3, pp. 217-226
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We obtain two classifications of weighted projective spaces: up to hoeomorphism and up to homotopy equivalence. We show that the former coincides with Al Amrani's classification up to isomorphism of algebraic varieties, and deduce the latter by proving that the Mislin genus of any weighted projective space is rigid.
Keywords:
obtain classifications weighted projective spaces hoeomorphism homotopy equivalence former coincides amranis classification isomorphism algebraic varieties deduce latter proving mislin genus weighted projective space rigid
Affiliations des auteurs :
Anthony Bahri 1 ; Matthias Franz 2 ; Dietrich Notbohm 3 ; Nigel Ray 4
@article{10_4064_fm220_3_3,
author = {Anthony Bahri and Matthias Franz and Dietrich Notbohm and Nigel Ray},
title = {The classification of weighted projective spaces},
journal = {Fundamenta Mathematicae},
pages = {217--226},
publisher = {mathdoc},
volume = {220},
number = {3},
year = {2013},
doi = {10.4064/fm220-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-3/}
}
TY - JOUR AU - Anthony Bahri AU - Matthias Franz AU - Dietrich Notbohm AU - Nigel Ray TI - The classification of weighted projective spaces JO - Fundamenta Mathematicae PY - 2013 SP - 217 EP - 226 VL - 220 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-3/ DO - 10.4064/fm220-3-3 LA - en ID - 10_4064_fm220_3_3 ER -
%0 Journal Article %A Anthony Bahri %A Matthias Franz %A Dietrich Notbohm %A Nigel Ray %T The classification of weighted projective spaces %J Fundamenta Mathematicae %D 2013 %P 217-226 %V 220 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-3/ %R 10.4064/fm220-3-3 %G en %F 10_4064_fm220_3_3
Anthony Bahri; Matthias Franz; Dietrich Notbohm; Nigel Ray. The classification of weighted projective spaces. Fundamenta Mathematicae, Tome 220 (2013) no. 3, pp. 217-226. doi: 10.4064/fm220-3-3
Cité par Sources :