The union of two $D$-spaces need not be $D$
Fundamenta Mathematicae, Tome 220 (2013) no. 2, pp. 129-137
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct from $\diamondsuit $ a $T_2$ example of a hereditarily Lindelöf space $X$ that is not a $D$-space but is the union of two subspaces both of which are $D$-spaces. This answers a question of Arhangel'skii.
Keywords:
construct diamondsuit example hereditarily lindel space d space union subspaces which d spaces answers question arhangelskii
Affiliations des auteurs :
Dániel T. Soukup 1 ; Paul J. Szeptycki 2
@article{10_4064_fm220_2_3,
author = {D\'aniel T. Soukup and Paul J. Szeptycki},
title = {The union of two $D$-spaces need not be $D$},
journal = {Fundamenta Mathematicae},
pages = {129--137},
publisher = {mathdoc},
volume = {220},
number = {2},
year = {2013},
doi = {10.4064/fm220-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-2-3/}
}
TY - JOUR AU - Dániel T. Soukup AU - Paul J. Szeptycki TI - The union of two $D$-spaces need not be $D$ JO - Fundamenta Mathematicae PY - 2013 SP - 129 EP - 137 VL - 220 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm220-2-3/ DO - 10.4064/fm220-2-3 LA - en ID - 10_4064_fm220_2_3 ER -
Dániel T. Soukup; Paul J. Szeptycki. The union of two $D$-spaces need not be $D$. Fundamenta Mathematicae, Tome 220 (2013) no. 2, pp. 129-137. doi: 10.4064/fm220-2-3
Cité par Sources :