Remainders of metrizable and close to metrizable spaces
Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 71-81.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We continue the study of remainders of metrizable spaces, expanding and applying results obtained in [Fund. Math. 215 (2011)]. Some new facts are established. In particular, the closure of any countable subset in the remainder of a metrizable space is a Lindelöf $p$-space. Hence, if a remainder of a metrizable space is separable, then this remainder is a Lindelöf $p$-space. If the density of a remainder $Y$ of a metrizable space does not exceed $2^\omega $, then $Y$ is a Lindelöf $\varSigma $-space. We also show that many of the theorems on remainders of metrizable spaces can be extended to paracompact $p$-spaces or to spaces with a $\sigma $-disjoint base. We also extend to remainders of metrizable spaces the well known theorem on metrizability of compacta with a point-countable base.
DOI : 10.4064/fm220-1-4
Keywords: continue study remainders metrizable spaces expanding applying results obtained fund math facts established particular closure countable subset remainder metrizable space lindel p space hence remainder metrizable space separable remainder lindel p space density remainder metrizable space does exceed omega lindel varsigma space many theorems remainders metrizable spaces extended paracompact p spaces spaces sigma disjoint base extend remainders metrizable spaces known theorem metrizability compacta point countable base

A. V. Arhangel'skii 1

1 h. 33, apt. 137 Kutuzovskii Prospekt Moscow 121165, Russian Federation
@article{10_4064_fm220_1_4,
     author = {A. V. Arhangel'skii},
     title = {Remainders of metrizable and close to metrizable spaces},
     journal = {Fundamenta Mathematicae},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {220},
     number = {1},
     year = {2013},
     doi = {10.4064/fm220-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-4/}
}
TY  - JOUR
AU  - A. V. Arhangel'skii
TI  - Remainders of metrizable and close to metrizable spaces
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 71
EP  - 81
VL  - 220
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-4/
DO  - 10.4064/fm220-1-4
LA  - en
ID  - 10_4064_fm220_1_4
ER  - 
%0 Journal Article
%A A. V. Arhangel'skii
%T Remainders of metrizable and close to metrizable spaces
%J Fundamenta Mathematicae
%D 2013
%P 71-81
%V 220
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-4/
%R 10.4064/fm220-1-4
%G en
%F 10_4064_fm220_1_4
A. V. Arhangel'skii. Remainders of metrizable and close to metrizable spaces. Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 71-81. doi : 10.4064/fm220-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-4/

Cité par Sources :