Remainders of metrizable and close to metrizable spaces
Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 71-81
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We continue the study of remainders of metrizable spaces, expanding and applying results obtained in [Fund. Math. 215 (2011)]. Some new facts are established. In particular, the closure of any countable subset in the remainder of a metrizable space is a Lindelöf $p$-space. Hence, if a remainder of a metrizable space is separable, then this remainder is a Lindelöf $p$-space. If the density of a remainder $Y$ of a metrizable space does not exceed $2^\omega $, then $Y$ is a Lindelöf $\varSigma $-space. We also show that many of the theorems on remainders of metrizable spaces can be extended to paracompact $p$-spaces or to spaces with a $\sigma $-disjoint base. We also extend to remainders of metrizable spaces the well known theorem on metrizability of compacta with a point-countable base.
Keywords:
continue study remainders metrizable spaces expanding applying results obtained fund math facts established particular closure countable subset remainder metrizable space lindel p space hence remainder metrizable space separable remainder lindel p space density remainder metrizable space does exceed omega lindel varsigma space many theorems remainders metrizable spaces extended paracompact p spaces spaces sigma disjoint base extend remainders metrizable spaces known theorem metrizability compacta point countable base
Affiliations des auteurs :
A. V. Arhangel'skii  1
@article{10_4064_fm220_1_4,
author = {A. V. Arhangel'skii},
title = {Remainders of metrizable and close to metrizable spaces},
journal = {Fundamenta Mathematicae},
pages = {71--81},
year = {2013},
volume = {220},
number = {1},
doi = {10.4064/fm220-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-4/}
}
A. V. Arhangel'skii. Remainders of metrizable and close to metrizable spaces. Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 71-81. doi: 10.4064/fm220-1-4
Cité par Sources :