Equilibrium measures for holomorphic
endomorphisms
of complex projective spaces
Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 23-69
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f:\mathbb{P}\to\mathbb{P}$ be a holomorphic endomorphism of a complex
projective space $\mathbb{P}^k$, $k\ge 1$, and let $J$ be the Julia set of
$f$ (the topological support of the unique maximal entropy measure). Then there exists a positive number
$\kappa_f>0$ such that if $\phi:J\to\mathbb{R}$ is a Hölder continuous
function with $\sup(\phi)-\inf(\phi)\kappa_f$, then $\phi$ admits a
unique equilibrium state $\mu_\phi$ on $J$. This equilibrium state is
equivalent to a fixed point of the normalized dual Perron–Frobenius
operator. In addition, the dynamical system $(f,\mu_\phi)$ is
K-mixing, whence ergodic. Proving
almost periodicity of the corresponding Perron–Frobenius operator is
the main technical task of the paper. It requires producing
sufficiently many “good” inverse branches and controling the
distortion of the Birkhoff sums of the potential $\phi$. In the
case when the Julia set $J$ does not intersect any periodic
irreducible algebraic variety contained in the critical set of $f$, we have
$\kappa_f=\log d$, where $d$ is the algebraic degree of $f$.
Keywords:
mathbb mathbb holomorphic endomorphism complex projective space mathbb julia set topological support unique maximal entropy measure there exists positive number kappa phi mathbb lder continuous function sup phi inf phi kappa phi admits unique equilibrium state phi equilibrium state equivalent fixed point normalized dual perron frobenius operator addition dynamical system phi k mixing whence ergodic proving almost periodicity corresponding perron frobenius operator main technical task paper requires producing sufficiently many inverse branches controling distortion birkhoff sums potential phi julia set does intersect periodic irreducible algebraic variety contained critical set have kappa log where algebraic degree nbsp
Affiliations des auteurs :
Mariusz Urbański 1 ; Anna Zdunik 2
@article{10_4064_fm220_1_3,
author = {Mariusz Urba\'nski and Anna Zdunik},
title = {Equilibrium measures for holomorphic
endomorphisms
of complex projective spaces},
journal = {Fundamenta Mathematicae},
pages = {23--69},
publisher = {mathdoc},
volume = {220},
number = {1},
year = {2013},
doi = {10.4064/fm220-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-3/}
}
TY - JOUR AU - Mariusz Urbański AU - Anna Zdunik TI - Equilibrium measures for holomorphic endomorphisms of complex projective spaces JO - Fundamenta Mathematicae PY - 2013 SP - 23 EP - 69 VL - 220 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-3/ DO - 10.4064/fm220-1-3 LA - en ID - 10_4064_fm220_1_3 ER -
%0 Journal Article %A Mariusz Urbański %A Anna Zdunik %T Equilibrium measures for holomorphic endomorphisms of complex projective spaces %J Fundamenta Mathematicae %D 2013 %P 23-69 %V 220 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-3/ %R 10.4064/fm220-1-3 %G en %F 10_4064_fm220_1_3
Mariusz Urbański; Anna Zdunik. Equilibrium measures for holomorphic endomorphisms of complex projective spaces. Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 23-69. doi: 10.4064/fm220-1-3
Cité par Sources :