The growth rate and dimension theory of beta-expansions
Fundamenta Mathematicae, Tome 219 (2012) no. 3, pp. 271-285
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In a recent paper of Feng and Sidorov they
show that for $\beta\in(1,(1+\sqrt{5})/2)$ the set of
$\beta$-expansions grows exponentially for every
$x\in(0,1/(\beta-1))$. In this paper we study this growth rate
further. We also consider the set of $\beta$-expansions from
a dimension theory perspective.
Keywords:
recent paper feng sidorov beta sqrt set beta expansions grows exponentially every beta paper study growth rate further consider set beta expansions dimension theory perspective
Affiliations des auteurs :
Simon Baker 1
@article{10_4064_fm219_3_6,
author = {Simon Baker},
title = {The growth rate and dimension theory of beta-expansions},
journal = {Fundamenta Mathematicae},
pages = {271--285},
publisher = {mathdoc},
volume = {219},
number = {3},
year = {2012},
doi = {10.4064/fm219-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm219-3-6/}
}
Simon Baker. The growth rate and dimension theory of beta-expansions. Fundamenta Mathematicae, Tome 219 (2012) no. 3, pp. 271-285. doi: 10.4064/fm219-3-6
Cité par Sources :