The multifractal box dimensions of typical measures
Fundamenta Mathematicae, Tome 219 (2012) no. 2, pp. 145-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We compute the typical (in the sense of Baire's category theorem) multifractal box dimensions of measures on a compact subset of $\mathbb R^d$. Our results are new even in the context of box dimensions of measures.
DOI : 10.4064/fm219-2-5
Keywords: compute typical sense baires category theorem multifractal box dimensions measures compact subset mathbb results even context box dimensions measures

Frédéric Bayart 1

1 Clermont Université Université Blaise Pascal Laboratoire de Mathématiques BP 10448, F-63000 Clermont-Ferrand, France and CNRS, UMR 6620 Laboratoire de Mathématiques F-63177 Aubière, France
@article{10_4064_fm219_2_5,
     author = {Fr\'ed\'eric Bayart},
     title = {The multifractal box dimensions of typical measures},
     journal = {Fundamenta Mathematicae},
     pages = {145--162},
     publisher = {mathdoc},
     volume = {219},
     number = {2},
     year = {2012},
     doi = {10.4064/fm219-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-5/}
}
TY  - JOUR
AU  - Frédéric Bayart
TI  - The multifractal box dimensions of typical measures
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 145
EP  - 162
VL  - 219
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-5/
DO  - 10.4064/fm219-2-5
LA  - en
ID  - 10_4064_fm219_2_5
ER  - 
%0 Journal Article
%A Frédéric Bayart
%T The multifractal box dimensions of typical measures
%J Fundamenta Mathematicae
%D 2012
%P 145-162
%V 219
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-5/
%R 10.4064/fm219-2-5
%G en
%F 10_4064_fm219_2_5
Frédéric Bayart. The multifractal box dimensions of typical measures. Fundamenta Mathematicae, Tome 219 (2012) no. 2, pp. 145-162. doi : 10.4064/fm219-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-5/

Cité par Sources :