$C^1$ stability of endomorphisms on two-dimensional manifolds
Fundamenta Mathematicae, Tome 219 (2012) no. 1, pp. 37-58
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A set of necessary conditions for $C^1$ stability of noninvertible maps is presented. It is proved that the conditions are sufficient for $C^1$ stability in compact oriented manifolds of dimension two. An example given by F. Przytycki in 1977 is shown to satisfy these conditions. It is the first example known of a $C^1$ stable map (noninvertible and nonexpanding) in a manifold of dimension two, while a wide class of examples are already known in every other dimension.
Keywords:
set necessary conditions stability noninvertible maps presented proved conditions sufficient stability compact oriented manifolds dimension example given nbsp przytycki shown satisfy these conditions first example known stable map noninvertible nonexpanding manifold dimension while wide class examples already known every other dimension
Affiliations des auteurs :
J. Iglesias 1 ; A. Portela 1 ; A. Rovella 1
@article{10_4064_fm219_1_3,
author = {J. Iglesias and A. Portela and A. Rovella},
title = {$C^1$ stability of endomorphisms on two-dimensional manifolds},
journal = {Fundamenta Mathematicae},
pages = {37--58},
publisher = {mathdoc},
volume = {219},
number = {1},
year = {2012},
doi = {10.4064/fm219-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm219-1-3/}
}
TY - JOUR AU - J. Iglesias AU - A. Portela AU - A. Rovella TI - $C^1$ stability of endomorphisms on two-dimensional manifolds JO - Fundamenta Mathematicae PY - 2012 SP - 37 EP - 58 VL - 219 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm219-1-3/ DO - 10.4064/fm219-1-3 LA - en ID - 10_4064_fm219_1_3 ER -
J. Iglesias; A. Portela; A. Rovella. $C^1$ stability of endomorphisms on two-dimensional manifolds. Fundamenta Mathematicae, Tome 219 (2012) no. 1, pp. 37-58. doi: 10.4064/fm219-1-3
Cité par Sources :