On the Hausdorff dimension of ultrametric subsets in $\mathbb R^n$
Fundamenta Mathematicae, Tome 218 (2012) no. 3, pp. 285-290
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For every $\varepsilon>0$, any subset of $\mathbb{R}^n$ with Hausdorff dimension larger than $(1-\varepsilon)n$ must have ultrametric distortion larger than $1/(4\varepsilon)$.
Keywords:
every varepsilon subset mathbb hausdorff dimension larger varepsilon have ultrametric distortion larger varepsilon
Affiliations des auteurs :
James R. Lee 1 ; Manor Mendel 2 ; Mohammad Moharrami 1
@article{10_4064_fm218_3_5,
author = {James R. Lee and Manor Mendel and Mohammad Moharrami},
title = {On the {Hausdorff} dimension of ultrametric subsets in $\mathbb R^n$},
journal = {Fundamenta Mathematicae},
pages = {285--290},
publisher = {mathdoc},
volume = {218},
number = {3},
year = {2012},
doi = {10.4064/fm218-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-5/}
}
TY - JOUR AU - James R. Lee AU - Manor Mendel AU - Mohammad Moharrami TI - On the Hausdorff dimension of ultrametric subsets in $\mathbb R^n$ JO - Fundamenta Mathematicae PY - 2012 SP - 285 EP - 290 VL - 218 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-5/ DO - 10.4064/fm218-3-5 LA - en ID - 10_4064_fm218_3_5 ER -
%0 Journal Article %A James R. Lee %A Manor Mendel %A Mohammad Moharrami %T On the Hausdorff dimension of ultrametric subsets in $\mathbb R^n$ %J Fundamenta Mathematicae %D 2012 %P 285-290 %V 218 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-5/ %R 10.4064/fm218-3-5 %G en %F 10_4064_fm218_3_5
James R. Lee; Manor Mendel; Mohammad Moharrami. On the Hausdorff dimension of ultrametric subsets in $\mathbb R^n$. Fundamenta Mathematicae, Tome 218 (2012) no. 3, pp. 285-290. doi: 10.4064/fm218-3-5
Cité par Sources :