On the Hausdorff dimension of ultrametric subsets in $\mathbb R^n$
Fundamenta Mathematicae, Tome 218 (2012) no. 3, pp. 285-290.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every $\varepsilon>0$, any subset of $\mathbb{R}^n$ with Hausdorff dimension larger than $(1-\varepsilon)n$ must have ultrametric distortion larger than $1/(4\varepsilon)$.
DOI : 10.4064/fm218-3-5
Keywords: every varepsilon subset mathbb hausdorff dimension larger varepsilon have ultrametric distortion larger varepsilon

James R. Lee 1 ; Manor Mendel 2 ; Mohammad Moharrami 1

1 Department of Computer Science and Engineering Box 352350 University of Washington Seattle, WA 98195-2350, U.S.A.
2 Mathematics and Computer Science Department The Open University of Israel 1 University Rd., P.O. Box 808 Raanana 43107, Israel
@article{10_4064_fm218_3_5,
     author = {James R. Lee and Manor Mendel and Mohammad Moharrami},
     title = {On the {Hausdorff} dimension of ultrametric subsets in $\mathbb R^n$},
     journal = {Fundamenta Mathematicae},
     pages = {285--290},
     publisher = {mathdoc},
     volume = {218},
     number = {3},
     year = {2012},
     doi = {10.4064/fm218-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-5/}
}
TY  - JOUR
AU  - James R. Lee
AU  - Manor Mendel
AU  - Mohammad Moharrami
TI  - On the Hausdorff dimension of ultrametric subsets in $\mathbb R^n$
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 285
EP  - 290
VL  - 218
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-5/
DO  - 10.4064/fm218-3-5
LA  - en
ID  - 10_4064_fm218_3_5
ER  - 
%0 Journal Article
%A James R. Lee
%A Manor Mendel
%A Mohammad Moharrami
%T On the Hausdorff dimension of ultrametric subsets in $\mathbb R^n$
%J Fundamenta Mathematicae
%D 2012
%P 285-290
%V 218
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-5/
%R 10.4064/fm218-3-5
%G en
%F 10_4064_fm218_3_5
James R. Lee; Manor Mendel; Mohammad Moharrami. On the Hausdorff dimension of ultrametric subsets in $\mathbb R^n$. Fundamenta Mathematicae, Tome 218 (2012) no. 3, pp. 285-290. doi : 10.4064/fm218-3-5. http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-5/

Cité par Sources :