The point of continuity property, neighbourhood assignments and filter convergences
Fundamenta Mathematicae, Tome 218 (2012) no. 3, pp. 225-242
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that for some large classes of topological spaces $X$ and any metric space $(Z,d)$, the point of continuity property of any function $f: X\to (Z,d)$ is equivalent to the following condition:
$(*)$ For every $\varepsilon>0$, there is a
neighbourhood assignment $(V_x)_{x\in X}$
of $X$ such that $d(f(x),f(y))\varepsilon$ whenever $(x,y)\in V_y\times V_x$. We also
give various descriptions of the filters $\mathcal F$ on the integers $\mathbb N$ for which
($*$) is satisfied by the $\mathcal F$-limit of any sequence of
continuous functions from a topological space into a metric space.
Keywords:
large classes topological spaces metric space point continuity property function equivalent following condition * every varepsilon there neighbourhood assignment varepsilon whenever times various descriptions filters mathcal integers mathbb which * satisfied mathcal f limit sequence continuous functions topological space metric space
Affiliations des auteurs :
Ahmed Bouziad 1
@article{10_4064_fm218_3_2,
author = {Ahmed Bouziad},
title = {The point of continuity property, neighbourhood assignments and filter convergences},
journal = {Fundamenta Mathematicae},
pages = {225--242},
publisher = {mathdoc},
volume = {218},
number = {3},
year = {2012},
doi = {10.4064/fm218-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-2/}
}
TY - JOUR AU - Ahmed Bouziad TI - The point of continuity property, neighbourhood assignments and filter convergences JO - Fundamenta Mathematicae PY - 2012 SP - 225 EP - 242 VL - 218 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm218-3-2/ DO - 10.4064/fm218-3-2 LA - en ID - 10_4064_fm218_3_2 ER -
Ahmed Bouziad. The point of continuity property, neighbourhood assignments and filter convergences. Fundamenta Mathematicae, Tome 218 (2012) no. 3, pp. 225-242. doi: 10.4064/fm218-3-2
Cité par Sources :