Universal measure zero, large Hausdorff dimension,
and nearly Lipschitz maps
Fundamenta Mathematicae, Tome 218 (2012) no. 2, pp. 95-119
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that
each analytic set in $\mathbb{R}^n$ contains a universally null set
of the same Hausdorff dimension
and that each metric space contains a
universally null set of Hausdorff dimension
no less than the topological dimension of the space.
Similar results also hold for universally meager sets.An essential part of the construction involves an analysis of
Lipschitz-like mappings
of separable metric spaces onto Cantor cubes and self-similar sets.
Keywords:
prove each analytic set mathbb contains universally null set hausdorff dimension each metric space contains universally null set hausdorff dimension topological dimension space similar results universally meager sets essential part construction involves analysis lipschitz like mappings separable metric spaces cantor cubes self similar sets
Affiliations des auteurs :
Ondřej Zindulka 1
@article{10_4064_fm218_2_1,
author = {Ond\v{r}ej Zindulka},
title = {Universal measure zero, large {Hausdorff} dimension,
and nearly {Lipschitz} maps},
journal = {Fundamenta Mathematicae},
pages = {95--119},
publisher = {mathdoc},
volume = {218},
number = {2},
year = {2012},
doi = {10.4064/fm218-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm218-2-1/}
}
TY - JOUR AU - Ondřej Zindulka TI - Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps JO - Fundamenta Mathematicae PY - 2012 SP - 95 EP - 119 VL - 218 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm218-2-1/ DO - 10.4064/fm218-2-1 LA - en ID - 10_4064_fm218_2_1 ER -
Ondřej Zindulka. Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps. Fundamenta Mathematicae, Tome 218 (2012) no. 2, pp. 95-119. doi: 10.4064/fm218-2-1
Cité par Sources :