On the spectrum of stochastic perturbations of the shift and Julia sets
Fundamenta Mathematicae, Tome 218 (2012) no. 1, pp. 47-68
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We extend the Killeen–Taylor study [Nonlinearity 13 (2000)] by investigating in different
Banach spaces ($\ell^\alpha(\mathbb N), c_0(\mathbb N),c(\mathbb N)$)
the point, continuous and residual spectra of stochastic perturbations of the shift operator associated to
the stochastic adding machine in base $2$ and in the Fibonacci base.
For the base $2$, the spectra are connected to the Julia set of a quadratic map.
In the Fibonacci case, the spectrum is related to the Julia set of
an endomorphism of $\mathbb C^2$.
Keywords:
extend killeen taylor study nonlinearity investigating different banach spaces ell alpha mathbb mathbb mathbb point continuous residual spectra stochastic perturbations shift operator associated stochastic adding machine base fibonacci base base spectra connected julia set quadratic map fibonacci spectrum related julia set endomorphism nbsp mathbb
Affiliations des auteurs :
el Houcein el Abdalaoui 1 ; Ali Messaoudi 2
@article{10_4064_fm218_1_3,
author = {el Houcein el Abdalaoui and Ali Messaoudi},
title = {On the spectrum of stochastic perturbations of the shift and {Julia} sets},
journal = {Fundamenta Mathematicae},
pages = {47--68},
year = {2012},
volume = {218},
number = {1},
doi = {10.4064/fm218-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm218-1-3/}
}
TY - JOUR AU - el Houcein el Abdalaoui AU - Ali Messaoudi TI - On the spectrum of stochastic perturbations of the shift and Julia sets JO - Fundamenta Mathematicae PY - 2012 SP - 47 EP - 68 VL - 218 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm218-1-3/ DO - 10.4064/fm218-1-3 LA - en ID - 10_4064_fm218_1_3 ER -
el Houcein el Abdalaoui; Ali Messaoudi. On the spectrum of stochastic perturbations of the shift and Julia sets. Fundamenta Mathematicae, Tome 218 (2012) no. 1, pp. 47-68. doi: 10.4064/fm218-1-3
Cité par Sources :