The super fixed point property for
asymptotically nonexpansive mappings
Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 265-277
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the super fixed point property for nonexpansive mappings and for asymptotically nonexpansive mappings in the intermediate sense are equivalent. As a consequence, we obtain fixed point theorems for asymptotically nonexpansive mappings in uniformly nonsquare and uniformly noncreasy Banach spaces. The results are generalized to commuting families of asymptotically nonexpansive mappings.
Keywords:
super fixed point property nonexpansive mappings asymptotically nonexpansive mappings intermediate sense equivalent consequence obtain fixed point theorems asymptotically nonexpansive mappings uniformly nonsquare uniformly noncreasy banach spaces results generalized commuting families asymptotically nonexpansive mappings
Affiliations des auteurs :
Andrzej Wiśnicki 1
@article{10_4064_fm217_3_5,
author = {Andrzej Wi\'snicki},
title = {The super fixed point property for
asymptotically nonexpansive mappings},
journal = {Fundamenta Mathematicae},
pages = {265--277},
publisher = {mathdoc},
volume = {217},
number = {3},
year = {2012},
doi = {10.4064/fm217-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-5/}
}
TY - JOUR AU - Andrzej Wiśnicki TI - The super fixed point property for asymptotically nonexpansive mappings JO - Fundamenta Mathematicae PY - 2012 SP - 265 EP - 277 VL - 217 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-5/ DO - 10.4064/fm217-3-5 LA - en ID - 10_4064_fm217_3_5 ER -
Andrzej Wiśnicki. The super fixed point property for asymptotically nonexpansive mappings. Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 265-277. doi: 10.4064/fm217-3-5
Cité par Sources :