On a volume element of a Hitchin component
Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 249-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varSigma$ be a closed oriented Riemann surface of genus at least $2$. By using symplectic chain complex, we construct a volume element for a Hitchin component of $\mathrm{Hom}(\pi_1(\varSigma),\mathrm{PSL}_n(\mathbb{R}))/\mathrm{PSL}_n(\mathbb{R})$ for $n > 2$.
DOI : 10.4064/fm217-3-4
Keywords: varsigma closed oriented riemann surface genus least nbsp using symplectic chain complex construct volume element hitchin component mathrm hom varsigma mathrm psl mathbb mathrm psl mathbb

Yaşar Sözen 1

1 Department of Mathematics Fatih University 34500 Istanbul, Turkey
@article{10_4064_fm217_3_4,
     author = {Ya\c{s}ar S\"ozen},
     title = {On a volume element of a {Hitchin} component},
     journal = {Fundamenta Mathematicae},
     pages = {249--264},
     publisher = {mathdoc},
     volume = {217},
     number = {3},
     year = {2012},
     doi = {10.4064/fm217-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-4/}
}
TY  - JOUR
AU  - Yaşar Sözen
TI  - On a volume element of a Hitchin component
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 249
EP  - 264
VL  - 217
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-4/
DO  - 10.4064/fm217-3-4
LA  - en
ID  - 10_4064_fm217_3_4
ER  - 
%0 Journal Article
%A Yaşar Sözen
%T On a volume element of a Hitchin component
%J Fundamenta Mathematicae
%D 2012
%P 249-264
%V 217
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-4/
%R 10.4064/fm217-3-4
%G en
%F 10_4064_fm217_3_4
Yaşar Sözen. On a volume element of a Hitchin component. Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 249-264. doi : 10.4064/fm217-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-4/

Cité par Sources :