On a volume element of a Hitchin component
Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 249-264
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\varSigma$ be a closed oriented Riemann surface of genus at least $2$.
By using symplectic chain complex, we construct a
volume element for a Hitchin component of
$\mathrm{Hom}(\pi_1(\varSigma),\mathrm{PSL}_n(\mathbb{R}))/\mathrm{PSL}_n(\mathbb{R})$
for $n > 2$.
Keywords:
varsigma closed oriented riemann surface genus least nbsp using symplectic chain complex construct volume element hitchin component mathrm hom varsigma mathrm psl mathbb mathrm psl mathbb
Affiliations des auteurs :
Yaşar Sözen  1
@article{10_4064_fm217_3_4,
author = {Ya\c{s}ar S\"ozen},
title = {On a volume element of a {Hitchin} component},
journal = {Fundamenta Mathematicae},
pages = {249--264},
year = {2012},
volume = {217},
number = {3},
doi = {10.4064/fm217-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-4/}
}
Yaşar Sözen. On a volume element of a Hitchin component. Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 249-264. doi: 10.4064/fm217-3-4
Cité par Sources :