An operator invariant for handlebody-knots
Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 233-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A handlebody-knot is a handlebody embedded in the $3$-sphere. We improve Luo's result about markings on a surface, and show that an IH-move is sufficient to investigate handlebody-knots with spatial trivalent graphs without cut-edges. We also give fundamental moves with a height function for handlebody-tangles, which helps us to define operator invariants for handlebody-knots. By using the fundamental moves, we give an operator invariant.
Keywords:
handlebody knot handlebody embedded sphere improve luos result about markings surface ih move sufficient investigate handlebody knots spatial trivalent graphs without cut edges fundamental moves height function handlebody tangles which helps define operator invariants handlebody knots using fundamental moves operator invariant
Affiliations des auteurs :
Kai Ishihara 1 ; Atsushi Ishii 2
@article{10_4064_fm217_3_3,
author = {Kai Ishihara and Atsushi Ishii},
title = {An operator invariant for handlebody-knots},
journal = {Fundamenta Mathematicae},
pages = {233--247},
publisher = {mathdoc},
volume = {217},
number = {3},
year = {2012},
doi = {10.4064/fm217-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-3/}
}
Kai Ishihara; Atsushi Ishii. An operator invariant for handlebody-knots. Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 233-247. doi: 10.4064/fm217-3-3
Cité par Sources :