Partition ideals below $\aleph _{\omega} $
Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 21-34
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Motivated by an application to the unconditional basic sequence problem appearing in our previous paper, we introduce analogues of the Laver ideal on $\aleph _2$ living on index sets of the form $[\aleph _k]^\omega $ and use this to refine the well-known high-dimensional polarized partition relation for $\aleph _\omega $ of Shelah.
Keywords:
motivated application unconditional basic sequence problem appearing previous paper introduce analogues laver ideal aleph living index sets form aleph omega refine well known high dimensional polarized partition relation aleph omega shelah
Affiliations des auteurs :
P. Dodos 1 ; J. Lopez-Abad 2 ; S. Todorcevic 3
@article{10_4064_fm217_1_3,
author = {P. Dodos and J. Lopez-Abad and S. Todorcevic},
title = {Partition ideals below $\aleph _{\omega} $},
journal = {Fundamenta Mathematicae},
pages = {21--34},
publisher = {mathdoc},
volume = {217},
number = {1},
year = {2012},
doi = {10.4064/fm217-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-3/}
}
TY - JOUR
AU - P. Dodos
AU - J. Lopez-Abad
AU - S. Todorcevic
TI - Partition ideals below $\aleph _{\omega} $
JO - Fundamenta Mathematicae
PY - 2012
SP - 21
EP - 34
VL - 217
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-3/
DO - 10.4064/fm217-1-3
LA - en
ID - 10_4064_fm217_1_3
ER -
P. Dodos; J. Lopez-Abad; S. Todorcevic. Partition ideals below $\aleph _{\omega} $. Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 21-34. doi: 10.4064/fm217-1-3
Cité par Sources :