Bootstrapping Kirszbraun's extension theorem
Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 13-19.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show how Kirszbraun's theorem on extending Lipschitz mappings in Hilbert space implies its own generalization. There is a continuous extension operator preserving the Lipschitz constant of every mapping.
DOI : 10.4064/fm217-1-2
Keywords: kirszbrauns theorem extending lipschitz mappings hilbert space implies its own generalization there continuous extension operator preserving lipschitz constant every mapping

Eva Kopecká 1

1 Institut für Analysis Johannes Kepler Universität A-4040 Linz, Austria
@article{10_4064_fm217_1_2,
     author = {Eva Kopeck\'a},
     title = {Bootstrapping {Kirszbraun's} extension theorem},
     journal = {Fundamenta Mathematicae},
     pages = {13--19},
     publisher = {mathdoc},
     volume = {217},
     number = {1},
     year = {2012},
     doi = {10.4064/fm217-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-2/}
}
TY  - JOUR
AU  - Eva Kopecká
TI  - Bootstrapping Kirszbraun's extension theorem
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 13
EP  - 19
VL  - 217
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-2/
DO  - 10.4064/fm217-1-2
LA  - en
ID  - 10_4064_fm217_1_2
ER  - 
%0 Journal Article
%A Eva Kopecká
%T Bootstrapping Kirszbraun's extension theorem
%J Fundamenta Mathematicae
%D 2012
%P 13-19
%V 217
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-2/
%R 10.4064/fm217-1-2
%G en
%F 10_4064_fm217_1_2
Eva Kopecká. Bootstrapping Kirszbraun's extension theorem. Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 13-19. doi : 10.4064/fm217-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-2/

Cité par Sources :