Bootstrapping Kirszbraun's extension theorem
Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 13-19
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show how Kirszbraun's theorem on extending Lipschitz mappings in Hilbert space implies its own generalization. There is a continuous extension operator preserving the Lipschitz constant of every mapping.
Keywords:
kirszbrauns theorem extending lipschitz mappings hilbert space implies its own generalization there continuous extension operator preserving lipschitz constant every mapping
Affiliations des auteurs :
Eva Kopecká 1
@article{10_4064_fm217_1_2,
author = {Eva Kopeck\'a},
title = {Bootstrapping {Kirszbraun's} extension theorem},
journal = {Fundamenta Mathematicae},
pages = {13--19},
publisher = {mathdoc},
volume = {217},
number = {1},
year = {2012},
doi = {10.4064/fm217-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-2/}
}
Eva Kopecká. Bootstrapping Kirszbraun's extension theorem. Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 13-19. doi: 10.4064/fm217-1-2
Cité par Sources :