Multiplicative maps from $H\mathbb Z$ to a ring spectrum $R$—a naive version
Fundamenta Mathematicae, Tome 216 (2012) no. 3, pp. 193-205.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The paper is devoted to the study of the space of multiplicative maps from the Eilenberg–MacLane spectrum $H{\mathbb Z}$ to an arbitrary ring spectrum $R$. We try to generalize the approach of Schwede [Geom. Topol. 8 (2004)], where the case of a very special $R$ was studied. In particular we propose a definition of a formal group law in any ring spectrum, which might be of independent interest.
DOI : 10.4064/fm216-3-1
Keywords: paper devoted study space multiplicative maps eilenberg maclane spectrum mathbb arbitrary ring spectrum try generalize approach schwede geom topol where special studied particular propose definition formal group law ring spectrum which might independent interest

Stanisław Betley 1

1 Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_fm216_3_1,
     author = {Stanis{\l}aw Betley},
     title = {Multiplicative maps from $H\mathbb Z$ to a ring
spectrum $R${\textemdash}a naive version},
     journal = {Fundamenta Mathematicae},
     pages = {193--205},
     publisher = {mathdoc},
     volume = {216},
     number = {3},
     year = {2012},
     doi = {10.4064/fm216-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-1/}
}
TY  - JOUR
AU  - Stanisław Betley
TI  - Multiplicative maps from $H\mathbb Z$ to a ring
spectrum $R$—a naive version
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 193
EP  - 205
VL  - 216
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-1/
DO  - 10.4064/fm216-3-1
LA  - en
ID  - 10_4064_fm216_3_1
ER  - 
%0 Journal Article
%A Stanisław Betley
%T Multiplicative maps from $H\mathbb Z$ to a ring
spectrum $R$—a naive version
%J Fundamenta Mathematicae
%D 2012
%P 193-205
%V 216
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-1/
%R 10.4064/fm216-3-1
%G en
%F 10_4064_fm216_3_1
Stanisław Betley. Multiplicative maps from $H\mathbb Z$ to a ring
spectrum $R$—a naive version. Fundamenta Mathematicae, Tome 216 (2012) no. 3, pp. 193-205. doi : 10.4064/fm216-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-1/

Cité par Sources :