Multiplicative maps from $H\mathbb Z$ to a ring
spectrum $R$—a naive version
Fundamenta Mathematicae, Tome 216 (2012) no. 3, pp. 193-205
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to the study of the space of
multiplicative maps from the Eilenberg–MacLane spectrum $H{\mathbb Z}$ to
an arbitrary ring spectrum $R$. We try to generalize the approach
of Schwede [Geom. Topol. 8 (2004)], where the case of a very special $R$ was studied. In particular we
propose a definition of a formal group law in any ring spectrum,
which might be of independent interest.
Keywords:
paper devoted study space multiplicative maps eilenberg maclane spectrum mathbb arbitrary ring spectrum try generalize approach schwede geom topol where special studied particular propose definition formal group law ring spectrum which might independent interest
Affiliations des auteurs :
Stanisław Betley 1
@article{10_4064_fm216_3_1,
author = {Stanis{\l}aw Betley},
title = {Multiplicative maps from $H\mathbb Z$ to a ring
spectrum $R${\textemdash}a naive version},
journal = {Fundamenta Mathematicae},
pages = {193--205},
publisher = {mathdoc},
volume = {216},
number = {3},
year = {2012},
doi = {10.4064/fm216-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-1/}
}
TY - JOUR AU - Stanisław Betley TI - Multiplicative maps from $H\mathbb Z$ to a ring spectrum $R$—a naive version JO - Fundamenta Mathematicae PY - 2012 SP - 193 EP - 205 VL - 216 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-1/ DO - 10.4064/fm216-3-1 LA - en ID - 10_4064_fm216_3_1 ER -
Stanisław Betley. Multiplicative maps from $H\mathbb Z$ to a ring spectrum $R$—a naive version. Fundamenta Mathematicae, Tome 216 (2012) no. 3, pp. 193-205. doi: 10.4064/fm216-3-1
Cité par Sources :