Infinite paths and cliques in random graphs
Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 163-191
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the thresholds for the emergence of various properties in random subgraphs of
$(\mathbb N, )$. In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph.
No specific assumption on the probability is made.
The main tools are a topological version of Ramsey theory, exchangeability theory and elementary ergodic theory.
Keywords:
study thresholds emergence various properties random subgraphs mathbb particular sharp sufficient conditions existence finite infinite cliques paths random subgraph specific assumption probability made main tools topological version ramsey theory exchangeability theory elementary ergodic theory
Affiliations des auteurs :
Alessandro Berarducci 1 ; Pietro Majer 1 ; Matteo Novaga 2
@article{10_4064_fm216_2_6,
author = {Alessandro Berarducci and Pietro Majer and Matteo Novaga},
title = {Infinite paths and cliques in random graphs},
journal = {Fundamenta Mathematicae},
pages = {163--191},
publisher = {mathdoc},
volume = {216},
number = {2},
year = {2012},
doi = {10.4064/fm216-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-6/}
}
TY - JOUR AU - Alessandro Berarducci AU - Pietro Majer AU - Matteo Novaga TI - Infinite paths and cliques in random graphs JO - Fundamenta Mathematicae PY - 2012 SP - 163 EP - 191 VL - 216 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-6/ DO - 10.4064/fm216-2-6 LA - en ID - 10_4064_fm216_2_6 ER -
Alessandro Berarducci; Pietro Majer; Matteo Novaga. Infinite paths and cliques in random graphs. Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 163-191. doi: 10.4064/fm216-2-6
Cité par Sources :