Some questions of Arhangel'skii on rotoids
Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 147-161.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A rotoid is a space $X$ with a special point $e \in X$ and a homeomorphism $F: X^2 \rightarrow X^2$ having $F(x,x) = (x,e)$ and $F(e,x) = (e,x)$ for every $x \in X$. If any point of $X$ can be used as the point $e$, then $X$ is called a strong rotoid. We study some general properties of rotoids and prove that the Sorgenfrey line is a strong rotoid, thereby answering several questions posed by A. V. Arhangel'skii, and we pose further questions.
DOI : 10.4064/fm216-2-5
Keywords: rotoid space special point homeomorphism rightarrow having every point point called strong rotoid study general properties rotoids prove sorgenfrey line strong rotoid thereby answering several questions posed nbsp nbsp arhangelskii pose further questions

Harold Bennett 1 ; Dennis Burke 2 ; David Lutzer 3

1 Mathematics Department Texas Tech University Lubbock, TX 79409, U.S.A.
2 Mathematics Department Miami University Oxford, OH 45056, U.S.A.
3 Mathematics Department College of William and Mary Williamsburg, VA 23187, U.S.A.
@article{10_4064_fm216_2_5,
     author = {Harold Bennett and Dennis Burke and David Lutzer},
     title = {Some questions of {Arhangel'skii} on rotoids},
     journal = {Fundamenta Mathematicae},
     pages = {147--161},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2012},
     doi = {10.4064/fm216-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-5/}
}
TY  - JOUR
AU  - Harold Bennett
AU  - Dennis Burke
AU  - David Lutzer
TI  - Some questions of Arhangel'skii on rotoids
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 147
EP  - 161
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-5/
DO  - 10.4064/fm216-2-5
LA  - en
ID  - 10_4064_fm216_2_5
ER  - 
%0 Journal Article
%A Harold Bennett
%A Dennis Burke
%A David Lutzer
%T Some questions of Arhangel'skii on rotoids
%J Fundamenta Mathematicae
%D 2012
%P 147-161
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-5/
%R 10.4064/fm216-2-5
%G en
%F 10_4064_fm216_2_5
Harold Bennett; Dennis Burke; David Lutzer. Some questions of Arhangel'skii on rotoids. Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 147-161. doi : 10.4064/fm216-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-5/

Cité par Sources :