Some questions of Arhangel'skii on rotoids
Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 147-161
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A rotoid is a space $X$ with a special point $e \in X$ and a homeomorphism $F: X^2 \rightarrow X^2$ having $F(x,x) = (x,e)$ and $F(e,x) = (e,x)$ for every $x \in X$. If any point of $X$ can be used as the point $e$, then $X$ is called a strong rotoid. We study some general properties of rotoids and prove that the Sorgenfrey line is a strong rotoid, thereby answering several questions posed by A. V. Arhangel'skii, and we pose further questions.
Keywords:
rotoid space special point homeomorphism rightarrow having every point point called strong rotoid study general properties rotoids prove sorgenfrey line strong rotoid thereby answering several questions posed nbsp nbsp arhangelskii pose further questions
Affiliations des auteurs :
Harold Bennett 1 ; Dennis Burke 2 ; David Lutzer 3
@article{10_4064_fm216_2_5,
author = {Harold Bennett and Dennis Burke and David Lutzer},
title = {Some questions of {Arhangel'skii} on rotoids},
journal = {Fundamenta Mathematicae},
pages = {147--161},
publisher = {mathdoc},
volume = {216},
number = {2},
year = {2012},
doi = {10.4064/fm216-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-5/}
}
TY - JOUR AU - Harold Bennett AU - Dennis Burke AU - David Lutzer TI - Some questions of Arhangel'skii on rotoids JO - Fundamenta Mathematicae PY - 2012 SP - 147 EP - 161 VL - 216 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-5/ DO - 10.4064/fm216-2-5 LA - en ID - 10_4064_fm216_2_5 ER -
Harold Bennett; Dennis Burke; David Lutzer. Some questions of Arhangel'skii on rotoids. Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 147-161. doi: 10.4064/fm216-2-5
Cité par Sources :