Fixed points for positive permutation braids
Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 129-146.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Making use of the Nielsen fixed point theory, we study a conjugacy invariant of braids, which we call the level index function. We present a simple algorithm for computing it for positive permutation cyclic braids.
DOI : 10.4064/fm216-2-4
Keywords: making nielsen fixed point theory study conjugacy invariant braids which call level index function present simple algorithm computing positive permutation cyclic braids

Michał Misiurewicz 1 ; Ana Rodrigues 2

1 Department of Mathematical Sciences IUPUI 402 N. Blackford Street Indianapolis, IN 46202-3216, U.S.A.
2 Department of Mathematics KTH SE-100 44 Stockholm, Sweden
@article{10_4064_fm216_2_4,
     author = {Micha{\l} Misiurewicz and Ana Rodrigues},
     title = {Fixed points for positive permutation braids},
     journal = {Fundamenta Mathematicae},
     pages = {129--146},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2012},
     doi = {10.4064/fm216-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-4/}
}
TY  - JOUR
AU  - Michał Misiurewicz
AU  - Ana Rodrigues
TI  - Fixed points for positive permutation braids
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 129
EP  - 146
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-4/
DO  - 10.4064/fm216-2-4
LA  - en
ID  - 10_4064_fm216_2_4
ER  - 
%0 Journal Article
%A Michał Misiurewicz
%A Ana Rodrigues
%T Fixed points for positive permutation braids
%J Fundamenta Mathematicae
%D 2012
%P 129-146
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-4/
%R 10.4064/fm216-2-4
%G en
%F 10_4064_fm216_2_4
Michał Misiurewicz; Ana Rodrigues. Fixed points for positive permutation braids. Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 129-146. doi : 10.4064/fm216-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-4/

Cité par Sources :