On the lengths of bad sequences of monomial ideals over polynomial rings
Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 101-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give bad (with respect to the reverse inclusion ordering) sequences of monomial ideals in two variables with Ackermannian lengths and extend this to multiple recursive lengths for more variables.
DOI : 10.4064/fm216-2-1
Keywords: bad respect reverse inclusion ordering sequences monomial ideals variables ackermannian lengths extend multiple recursive lengths variables

Florian Pelupessy 1 ; Andreas Weiermann 1

1 Department of Mathematics Krijgslaan 281 Gebouw S22 9000 Ghent, Belgium
@article{10_4064_fm216_2_1,
     author = {Florian Pelupessy and Andreas Weiermann},
     title = {On the lengths of bad sequences of monomial ideals over polynomial rings},
     journal = {Fundamenta Mathematicae},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2012},
     doi = {10.4064/fm216-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-1/}
}
TY  - JOUR
AU  - Florian Pelupessy
AU  - Andreas Weiermann
TI  - On the lengths of bad sequences of monomial ideals over polynomial rings
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 101
EP  - 108
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-1/
DO  - 10.4064/fm216-2-1
LA  - en
ID  - 10_4064_fm216_2_1
ER  - 
%0 Journal Article
%A Florian Pelupessy
%A Andreas Weiermann
%T On the lengths of bad sequences of monomial ideals over polynomial rings
%J Fundamenta Mathematicae
%D 2012
%P 101-108
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-1/
%R 10.4064/fm216-2-1
%G en
%F 10_4064_fm216_2_1
Florian Pelupessy; Andreas Weiermann. On the lengths of bad sequences of monomial ideals over polynomial rings. Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 101-108. doi : 10.4064/fm216-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-1/

Cité par Sources :