Porcupine-like horseshoes: Transitivity, Lyapunov spectrum, and phase transitions
Fundamenta Mathematicae, Tome 216 (2012) no. 1, pp. 55-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study a partially hyperbolic and topologically transitive local diffeomorphism $F$ that is a skew-product over a horseshoe map. This system is derived from a homoclinic class and contains infinitely many hyperbolic periodic points of different indices and hence is not hyperbolic. The associated transitive invariant set $ \Lambda $ possesses a very rich fiber structure, it contains uncountably many trivial and uncountably many non-trivial fibers. Moreover, the spectrum of the central Lyapunov exponents of $F|_{{\Lambda }}$ contains a gap and hence gives rise to a first order phase transition. A major part of the proofs relies on the analysis of an associated iterated function system that is genuinely non-contracting.
DOI : 10.4064/fm216-1-2
Keywords: study partially hyperbolic topologically transitive local diffeomorphism skew product horseshoe map system derived homoclinic class contains infinitely many hyperbolic periodic points different indices hence hyperbolic associated transitive invariant set lambda possesses rich fiber structure contains uncountably many trivial uncountably many non trivial fibers moreover spectrum central lyapunov exponents lambda contains gap hence gives rise first order phase transition major part proofs relies analysis associated iterated function system genuinely non contracting

Lorenzo J. Díaz 1 ; Katrin Gelfert 2

1 Departamento de Matemática PUC-Rio Marquês de São Vicente 225 Gávea, Rio de Janeiro 225453-900, Brazil
2 Instituto de Matemática UFRJ Av. Athos da Silveira Ramos 149 Cidade Universitária Ilha do Fundão Rio de Janeiro 21945-909, Brazil
@article{10_4064_fm216_1_2,
     author = {Lorenzo J. D{\'\i}az and Katrin Gelfert},
     title = {Porcupine-like horseshoes:
 {Transitivity,} {Lyapunov} spectrum, and phase transitions},
     journal = {Fundamenta Mathematicae},
     pages = {55--100},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2012},
     doi = {10.4064/fm216-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-1-2/}
}
TY  - JOUR
AU  - Lorenzo J. Díaz
AU  - Katrin Gelfert
TI  - Porcupine-like horseshoes:
 Transitivity, Lyapunov spectrum, and phase transitions
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 55
EP  - 100
VL  - 216
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm216-1-2/
DO  - 10.4064/fm216-1-2
LA  - en
ID  - 10_4064_fm216_1_2
ER  - 
%0 Journal Article
%A Lorenzo J. Díaz
%A Katrin Gelfert
%T Porcupine-like horseshoes:
 Transitivity, Lyapunov spectrum, and phase transitions
%J Fundamenta Mathematicae
%D 2012
%P 55-100
%V 216
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm216-1-2/
%R 10.4064/fm216-1-2
%G en
%F 10_4064_fm216_1_2
Lorenzo J. Díaz; Katrin Gelfert. Porcupine-like horseshoes:
 Transitivity, Lyapunov spectrum, and phase transitions. Fundamenta Mathematicae, Tome 216 (2012) no. 1, pp. 55-100. doi : 10.4064/fm216-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm216-1-2/

Cité par Sources :