On finite groups acting on acyclic low-dimensional manifolds
Fundamenta Mathematicae, Tome 215 (2011) no. 3, pp. 203-217
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider finite groups which admit a faithful, smooth action on an
acyclic manifold of dimension three, four or five (e.g. Euclidean space). Our first
main result states that a finite group acting on an acyclic 3- or 4-manifold is
isomorphic to a subgroup of the orthogonal group ${\rm O}(3)$ or ${\rm O}(4)$,
respectively. The analogous statement remains open in dimension five (where it is not true for
arbitrary continuous actions, however). We prove that the only finite nonabelian
simple groups admitting a smooth action on an acyclic 5-manifold are the alternating
groups $\mathbb A_5$ and $\mathbb A_6$, and deduce from this a short list of finite groups, closely
related to the finite subgroups of SO(5), which are the candidates for
orientation-preserving actions on acyclic 5-manifolds.
Keywords:
consider finite groups which admit faithful smooth action acyclic manifold dimension three five euclidean space first main result states finite group acting acyclic manifold isomorphic subgroup orthogonal group respectively analogous statement remains dimension five where arbitrary continuous actions however prove only finite nonabelian simple groups admitting smooth action acyclic manifold alternating groups mathbb mathbb deduce short list finite groups closely related finite subgroups which candidates orientation preserving actions acyclic manifolds
Affiliations des auteurs :
Alessandra Guazzi 1 ; Mattia Mecchia 2 ; Bruno Zimmermann 2
@article{10_4064_fm215_3_1,
author = {Alessandra Guazzi and Mattia Mecchia and Bruno Zimmermann},
title = {On finite groups acting on acyclic low-dimensional manifolds},
journal = {Fundamenta Mathematicae},
pages = {203--217},
publisher = {mathdoc},
volume = {215},
number = {3},
year = {2011},
doi = {10.4064/fm215-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm215-3-1/}
}
TY - JOUR AU - Alessandra Guazzi AU - Mattia Mecchia AU - Bruno Zimmermann TI - On finite groups acting on acyclic low-dimensional manifolds JO - Fundamenta Mathematicae PY - 2011 SP - 203 EP - 217 VL - 215 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm215-3-1/ DO - 10.4064/fm215-3-1 LA - en ID - 10_4064_fm215_3_1 ER -
%0 Journal Article %A Alessandra Guazzi %A Mattia Mecchia %A Bruno Zimmermann %T On finite groups acting on acyclic low-dimensional manifolds %J Fundamenta Mathematicae %D 2011 %P 203-217 %V 215 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm215-3-1/ %R 10.4064/fm215-3-1 %G en %F 10_4064_fm215_3_1
Alessandra Guazzi; Mattia Mecchia; Bruno Zimmermann. On finite groups acting on acyclic low-dimensional manifolds. Fundamenta Mathematicae, Tome 215 (2011) no. 3, pp. 203-217. doi: 10.4064/fm215-3-1
Cité par Sources :