On finite groups acting on acyclic low-dimensional manifolds
Fundamenta Mathematicae, Tome 215 (2011) no. 3, pp. 203-217.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider finite groups which admit a faithful, smooth action on an acyclic manifold of dimension three, four or five (e.g. Euclidean space). Our first main result states that a finite group acting on an acyclic 3- or 4-manifold is isomorphic to a subgroup of the orthogonal group ${\rm O}(3)$ or ${\rm O}(4)$, respectively. The analogous statement remains open in dimension five (where it is not true for arbitrary continuous actions, however). We prove that the only finite nonabelian simple groups admitting a smooth action on an acyclic 5-manifold are the alternating groups $\mathbb A_5$ and $\mathbb A_6$, and deduce from this a short list of finite groups, closely related to the finite subgroups of SO(5), which are the candidates for orientation-preserving actions on acyclic 5-manifolds.
DOI : 10.4064/fm215-3-1
Keywords: consider finite groups which admit faithful smooth action acyclic manifold dimension three five euclidean space first main result states finite group acting acyclic manifold isomorphic subgroup orthogonal group respectively analogous statement remains dimension five where arbitrary continuous actions however prove only finite nonabelian simple groups admitting smooth action acyclic manifold alternating groups mathbb mathbb deduce short list finite groups closely related finite subgroups which candidates orientation preserving actions acyclic manifolds

Alessandra Guazzi 1 ; Mattia Mecchia 2 ; Bruno Zimmermann 2

1 SISSA Via Bonomea 256 34136 Trieste, Italy
2 Dipartimento di Matematica e Informatica Università degli Studi di Trieste 34100 Trieste, Italy
@article{10_4064_fm215_3_1,
     author = {Alessandra Guazzi and Mattia Mecchia and Bruno Zimmermann},
     title = {On finite  groups acting on acyclic low-dimensional manifolds},
     journal = {Fundamenta Mathematicae},
     pages = {203--217},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2011},
     doi = {10.4064/fm215-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm215-3-1/}
}
TY  - JOUR
AU  - Alessandra Guazzi
AU  - Mattia Mecchia
AU  - Bruno Zimmermann
TI  - On finite  groups acting on acyclic low-dimensional manifolds
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 203
EP  - 217
VL  - 215
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm215-3-1/
DO  - 10.4064/fm215-3-1
LA  - en
ID  - 10_4064_fm215_3_1
ER  - 
%0 Journal Article
%A Alessandra Guazzi
%A Mattia Mecchia
%A Bruno Zimmermann
%T On finite  groups acting on acyclic low-dimensional manifolds
%J Fundamenta Mathematicae
%D 2011
%P 203-217
%V 215
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm215-3-1/
%R 10.4064/fm215-3-1
%G en
%F 10_4064_fm215_3_1
Alessandra Guazzi; Mattia Mecchia; Bruno Zimmermann. On finite  groups acting on acyclic low-dimensional manifolds. Fundamenta Mathematicae, Tome 215 (2011) no. 3, pp. 203-217. doi : 10.4064/fm215-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm215-3-1/

Cité par Sources :