Expansions of subfields of the real field by a discrete set
Fundamenta Mathematicae, Tome 215 (2011) no. 2, pp. 167-175
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a subfield of the real field,
$D\subseteq K$ be a discrete set and $f:D^n \to K$ be such that $f(D^n)$ is somewhere dense. Then $(K,f)$ defines $\mathbb{Z}$. We present several applications of this result. We show that $K$ expanded by predicates for different cyclic multiplicative subgroups defines $\mathbb Z$. Moreover, we prove that every definably complete expansion of a subfield of the real field satisfies an analogue of the Baire category theorem.
Keywords:
subfield real field subseteq discrete set somewhere dense defines mathbb present several applications result expanded predicates different cyclic multiplicative subgroups defines mathbb moreover prove every definably complete expansion subfield real field satisfies analogue baire category theorem
Affiliations des auteurs :
Philipp Hieronymi 1
@article{10_4064_fm215_2_4,
author = {Philipp Hieronymi},
title = {Expansions of subfields of the real field by a discrete set},
journal = {Fundamenta Mathematicae},
pages = {167--175},
publisher = {mathdoc},
volume = {215},
number = {2},
year = {2011},
doi = {10.4064/fm215-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm215-2-4/}
}
TY - JOUR AU - Philipp Hieronymi TI - Expansions of subfields of the real field by a discrete set JO - Fundamenta Mathematicae PY - 2011 SP - 167 EP - 175 VL - 215 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm215-2-4/ DO - 10.4064/fm215-2-4 LA - en ID - 10_4064_fm215_2_4 ER -
Philipp Hieronymi. Expansions of subfields of the real field by a discrete set. Fundamenta Mathematicae, Tome 215 (2011) no. 2, pp. 167-175. doi: 10.4064/fm215-2-4
Cité par Sources :