Partial square at $\omega _1$ is implied by MM but not by PFA
Fundamenta Mathematicae, Tome 215 (2011) no. 2, pp. 109-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the results stated in the title.
DOI : 10.4064/fm215-2-2
Keywords: prove results stated title

Hiroshi Sakai 1

1 Graduate School of System Informatics Kobe University 1-1 Rokkodai, Nada, Kobe, Japan
@article{10_4064_fm215_2_2,
     author = {Hiroshi Sakai},
     title = {Partial square at $\omega _1$ is implied by {MM
} but not by {PFA}},
     journal = {Fundamenta Mathematicae},
     pages = {109--131},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2011},
     doi = {10.4064/fm215-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm215-2-2/}
}
TY  - JOUR
AU  - Hiroshi Sakai
TI  - Partial square at $\omega _1$ is implied by MM
 but not by PFA
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 109
EP  - 131
VL  - 215
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm215-2-2/
DO  - 10.4064/fm215-2-2
LA  - en
ID  - 10_4064_fm215_2_2
ER  - 
%0 Journal Article
%A Hiroshi Sakai
%T Partial square at $\omega _1$ is implied by MM
 but not by PFA
%J Fundamenta Mathematicae
%D 2011
%P 109-131
%V 215
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm215-2-2/
%R 10.4064/fm215-2-2
%G en
%F 10_4064_fm215_2_2
Hiroshi Sakai. Partial square at $\omega _1$ is implied by MM
 but not by PFA. Fundamenta Mathematicae, Tome 215 (2011) no. 2, pp. 109-131. doi : 10.4064/fm215-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm215-2-2/

Cité par Sources :