A note on generic subsets of definable groups
Fundamenta Mathematicae, Tome 215 (2011) no. 1, pp. 53-65.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We generalize the theory of generic subsets of definably compact definable groups to arbitrary o-minimal structures. This theory is a crucial part of the solution to Pillay's conjecture connecting definably compact definable groups with Lie groups.
DOI : 10.4064/fm215-1-3
Keywords: generalize theory generic subsets definably compact definable groups arbitrary o minimal structures theory crucial part solution pillays conjecture connecting definably compact definable groups lie groups

Mário J. Edmundo 1 ; G. Terzo 2

1 Universidade Aberta and CMAF Universidade de Lisboa Av. Prof. Gama Pinto 2 1649-003 Lisboa, Portugal
2 Department of Mathematics Seconda Università di Napoli Via Vivaldi 43 81100 Caserta, Italy
@article{10_4064_fm215_1_3,
     author = {M\'ario J. Edmundo and G. Terzo},
     title = {A note on generic subsets of definable groups},
     journal = {Fundamenta Mathematicae},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {215},
     number = {1},
     year = {2011},
     doi = {10.4064/fm215-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm215-1-3/}
}
TY  - JOUR
AU  - Mário J. Edmundo
AU  - G. Terzo
TI  - A note on generic subsets of definable groups
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 53
EP  - 65
VL  - 215
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm215-1-3/
DO  - 10.4064/fm215-1-3
LA  - en
ID  - 10_4064_fm215_1_3
ER  - 
%0 Journal Article
%A Mário J. Edmundo
%A G. Terzo
%T A note on generic subsets of definable groups
%J Fundamenta Mathematicae
%D 2011
%P 53-65
%V 215
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm215-1-3/
%R 10.4064/fm215-1-3
%G en
%F 10_4064_fm215_1_3
Mário J. Edmundo; G. Terzo. A note on generic subsets of definable groups. Fundamenta Mathematicae, Tome 215 (2011) no. 1, pp. 53-65. doi : 10.4064/fm215-1-3. http://geodesic.mathdoc.fr/articles/10.4064/fm215-1-3/

Cité par Sources :