On countable dense and strong $n$-homogeneity
Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 215-239
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if a space $X$ is countable dense homogeneous and no set of size $n-1$ separates it, then $X$ is strongly $n$-homogeneous. Our main result is the construction of an example of a Polish space $X$ that is strongly $n$-homogeneous for
every $n$, but not countable dense homogeneous.
Keywords:
prove space countable dense homogeneous set size n separates strongly n homogeneous main result construction example polish space strongly n homogeneous every nbsp countable dense homogeneous
Affiliations des auteurs :
Jan van Mill 1
@article{10_4064_fm214_3_2,
author = {Jan van Mill},
title = {On countable dense and strong $n$-homogeneity},
journal = {Fundamenta Mathematicae},
pages = {215--239},
publisher = {mathdoc},
volume = {214},
number = {3},
year = {2011},
doi = {10.4064/fm214-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-2/}
}
Jan van Mill. On countable dense and strong $n$-homogeneity. Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 215-239. doi: 10.4064/fm214-3-2
Cité par Sources :