On countable dense and strong $n$-homogeneity
Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 215-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if a space $X$ is countable dense homogeneous and no set of size $n-1$ separates it, then $X$ is strongly $n$-homogeneous. Our main result is the construction of an example of a Polish space $X$ that is strongly $n$-homogeneous for every $n$, but not countable dense homogeneous.
DOI : 10.4064/fm214-3-2
Keywords: prove space countable dense homogeneous set size n separates strongly n homogeneous main result construction example polish space strongly n homogeneous every nbsp countable dense homogeneous

Jan van Mill 1

1 Department of Mathematics Faculty of Sciences VU University Amsterdam De Boelelaan 1081$^{\rm a}$ 1081 HV Amsterdam, The Netherlands
@article{10_4064_fm214_3_2,
     author = {Jan van Mill},
     title = {On countable dense and strong $n$-homogeneity},
     journal = {Fundamenta Mathematicae},
     pages = {215--239},
     publisher = {mathdoc},
     volume = {214},
     number = {3},
     year = {2011},
     doi = {10.4064/fm214-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-2/}
}
TY  - JOUR
AU  - Jan van Mill
TI  - On countable dense and strong $n$-homogeneity
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 215
EP  - 239
VL  - 214
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-2/
DO  - 10.4064/fm214-3-2
LA  - en
ID  - 10_4064_fm214_3_2
ER  - 
%0 Journal Article
%A Jan van Mill
%T On countable dense and strong $n$-homogeneity
%J Fundamenta Mathematicae
%D 2011
%P 215-239
%V 214
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-2/
%R 10.4064/fm214-3-2
%G en
%F 10_4064_fm214_3_2
Jan van Mill. On countable dense and strong $n$-homogeneity. Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 215-239. doi : 10.4064/fm214-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-2/

Cité par Sources :