Khovanov–Rozansky homology for embedded graphs
Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 201-214.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any positive integer $n$, Khovanov and Rozansky constructed a bigraded link homology from which you can recover the $\mathfrak{sl}_n$ link polynomial invariants. We generalize the Khovanov–Rozansky construction in the case of finite 4-valent graphs embedded in a ball $B^3 \subset \mathbb{R}^3$. More precisely, we prove that the homology associated to a diagram of a 4-valent graph embedded in $B^3\subset \mathbb{R}^3$ is invariant under the graph moves introduced by Kauffman.
DOI : 10.4064/fm214-3-1
Keywords: positive integer khovanov rozansky constructed bigraded link homology which you recover mathfrak link polynomial invariants generalize khovanov rozansky construction finite valent graphs embedded ball subset mathbb precisely prove homology associated diagram valent graph embedded subset mathbb invariant under graph moves introduced kauffman

Emmanuel Wagner 1

1 Institut de Mathématiques de Bourgogne Université de Bourgogne UMR 5584 du CNRS BP 47870, 21078 Dijon Cedex, France
@article{10_4064_fm214_3_1,
     author = {Emmanuel Wagner},
     title = {Khovanov{\textendash}Rozansky homology for embedded graphs},
     journal = {Fundamenta Mathematicae},
     pages = {201--214},
     publisher = {mathdoc},
     volume = {214},
     number = {3},
     year = {2011},
     doi = {10.4064/fm214-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-1/}
}
TY  - JOUR
AU  - Emmanuel Wagner
TI  - Khovanov–Rozansky homology for embedded graphs
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 201
EP  - 214
VL  - 214
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-1/
DO  - 10.4064/fm214-3-1
LA  - en
ID  - 10_4064_fm214_3_1
ER  - 
%0 Journal Article
%A Emmanuel Wagner
%T Khovanov–Rozansky homology for embedded graphs
%J Fundamenta Mathematicae
%D 2011
%P 201-214
%V 214
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-1/
%R 10.4064/fm214-3-1
%G en
%F 10_4064_fm214_3_1
Emmanuel Wagner. Khovanov–Rozansky homology for embedded graphs. Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 201-214. doi : 10.4064/fm214-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-1/

Cité par Sources :