Khovanov–Rozansky homology for embedded graphs
Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 201-214
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any positive integer $n$, Khovanov and Rozansky constructed a bigraded link homology from which you can recover the $\mathfrak{sl}_n$ link polynomial invariants. We generalize the Khovanov–Rozansky construction in the case
of finite 4-valent graphs embedded in a ball $B^3 \subset \mathbb{R}^3$. More precisely, we
prove that the homology associated to a diagram of
a 4-valent graph embedded in $B^3\subset \mathbb{R}^3$ is invariant under the graph moves introduced by
Kauffman.
Keywords:
positive integer khovanov rozansky constructed bigraded link homology which you recover mathfrak link polynomial invariants generalize khovanov rozansky construction finite valent graphs embedded ball subset mathbb precisely prove homology associated diagram valent graph embedded subset mathbb invariant under graph moves introduced kauffman
Affiliations des auteurs :
Emmanuel Wagner 1
@article{10_4064_fm214_3_1,
author = {Emmanuel Wagner},
title = {Khovanov{\textendash}Rozansky homology for embedded graphs},
journal = {Fundamenta Mathematicae},
pages = {201--214},
publisher = {mathdoc},
volume = {214},
number = {3},
year = {2011},
doi = {10.4064/fm214-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-1/}
}
Emmanuel Wagner. Khovanov–Rozansky homology for embedded graphs. Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 201-214. doi: 10.4064/fm214-3-1
Cité par Sources :