Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps
Fundamenta Mathematicae, Tome 214 (2011) no. 2, pp. 135-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the family of transcendental entire maps given by $f_a(z)=a(z-(1-a))\exp(z+a)$ where $a$ is a complex parameter. Every map has a superattracting fixed point at $z=-a$ and an asymptotic value at $z=0$. For $a>1$ the Julia set of $f_a$ is known to be homeomorphic to the Sierpiński universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing hairs with prescribed combinatorics embedded in the Julia set for all parameters $a\geq 3$. We also study the relation between non-landing hairs and the immediate basin of attraction of $z=-a$. Even though each non-landing hair accumulates on the boundary of the immediate basin at a single point, its closure is an indecomposable subcontinuum of the Julia set.
DOI : 10.4064/fm214-2-3
Keywords: consider family transcendental entire maps given z a exp where complex parameter every map has superattracting fixed point a asymptotic value julia set known homeomorphic sierpi ski universal curve containing embedded copies one dimensional plane continuum paper study subcontinua julia set defined combinatorial manner particular existence non landing hairs prescribed combinatorics embedded julia set parameters geq study relation between non landing hairs immediate basin attraction a even though each non landing hair accumulates boundary immediate basin single point its closure indecomposable subcontinuum julia set

Antonio Garijo 1 ; Xavier Jarque 1 ; Mónica Moreno Rocha 2

1 Dept. d'Enginyeria Informàtica i Mathemàtiques Universitat Rovira i Virgili Tarragona 43007, Spain
2 Centro de Investigación en Matemáticas Guanajuato 36240, Mexico
@article{10_4064_fm214_2_3,
     author = {Antonio Garijo and Xavier Jarque and M\'onica Moreno Rocha},
     title = {Non-landing hairs in {Sierpi\'nski} curve {Julia} sets
of transcendental entire maps},
     journal = {Fundamenta Mathematicae},
     pages = {135--160},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2011},
     doi = {10.4064/fm214-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm214-2-3/}
}
TY  - JOUR
AU  - Antonio Garijo
AU  - Xavier Jarque
AU  - Mónica Moreno Rocha
TI  - Non-landing hairs in Sierpiński curve Julia sets
of transcendental entire maps
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 135
EP  - 160
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm214-2-3/
DO  - 10.4064/fm214-2-3
LA  - en
ID  - 10_4064_fm214_2_3
ER  - 
%0 Journal Article
%A Antonio Garijo
%A Xavier Jarque
%A Mónica Moreno Rocha
%T Non-landing hairs in Sierpiński curve Julia sets
of transcendental entire maps
%J Fundamenta Mathematicae
%D 2011
%P 135-160
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm214-2-3/
%R 10.4064/fm214-2-3
%G en
%F 10_4064_fm214_2_3
Antonio Garijo; Xavier Jarque; Mónica Moreno Rocha. Non-landing hairs in Sierpiński curve Julia sets
of transcendental entire maps. Fundamenta Mathematicae, Tome 214 (2011) no. 2, pp. 135-160. doi : 10.4064/fm214-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm214-2-3/

Cité par Sources :