On the continuity of the Hausdorff dimension of the Julia–Lavaurs sets
Fundamenta Mathematicae, Tome 214 (2011) no. 2, pp. 119-133
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f_0(z)=z^2+1/4$. We denote by $\mathcal{E}_0$ the set of parameters $\sigma\in\mathbb C$ for which the critical point 0 escapes from the filled-in Julia set $K(f_{0})$ in one step by the Lavaurs map $g_\sigma$. We prove that if $\sigma_0\in\partial\mathcal E_0$, then the Hausdorff dimension of the Julia–Lavaurs set $J_{0,\sigma}$ is continuous at $\sigma_0$ as the function of the parameter $\sigma\in\overline{\mathcal E_0}$ if and only if
${\rm HD}(J_{0,\sigma_0})\geq4/3$.
Since ${\rm HD}(J_{0,\sigma})>4/3$ on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of
${\rm HD}(J_{0,\sigma})$ on an open and dense subset of $\partial\mathcal{E}_0$.
Keywords:
denote mathcal set parameters sigma mathbb which critical point escapes filled in julia set step lavaurs map sigma prove sigma partial mathcal hausdorff dimension julia lavaurs set sigma continuous sigma function parameter sigma overline mathcal only sigma geq since sigma dense set parameters which correspond preparabolic points lower semicontinuity implies continuity sigma dense subset partial mathcal
Affiliations des auteurs :
Ludwik Jaksztas 1
@article{10_4064_fm214_2_2,
author = {Ludwik Jaksztas},
title = {On the continuity of the {Hausdorff} dimension of the {Julia{\textendash}Lavaurs} sets},
journal = {Fundamenta Mathematicae},
pages = {119--133},
publisher = {mathdoc},
volume = {214},
number = {2},
year = {2011},
doi = {10.4064/fm214-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm214-2-2/}
}
TY - JOUR AU - Ludwik Jaksztas TI - On the continuity of the Hausdorff dimension of the Julia–Lavaurs sets JO - Fundamenta Mathematicae PY - 2011 SP - 119 EP - 133 VL - 214 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm214-2-2/ DO - 10.4064/fm214-2-2 LA - en ID - 10_4064_fm214_2_2 ER -
Ludwik Jaksztas. On the continuity of the Hausdorff dimension of the Julia–Lavaurs sets. Fundamenta Mathematicae, Tome 214 (2011) no. 2, pp. 119-133. doi: 10.4064/fm214-2-2
Cité par Sources :