On tame embeddings of solenoids into 3-space
Fundamenta Mathematicae, Tome 214 (2011) no. 1, pp. 57-75.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Solenoids are inverse limits of the circle, and the classical knot theory is the theory of tame embeddings of the circle into 3-space. We make a general study, including certain classification results, of tame embeddings of solenoids into 3-space, seen as the “inverse limits” of tame embeddings of the circle.Some applications in topology and in dynamics are discussed. In particular, there are tamely embedded solenoids $\Sigma\subset \mathbb R^3$ which are strictly achiral. Since solenoids are non-planar, this contrasts sharply with the known fact that if there is a strictly achiral embedding $Y\subset \mathbb R^3$ of a compact polyhedron $Y$, then $Y$ must be planar.
DOI : 10.4064/fm214-1-4
Keywords: solenoids inverse limits circle classical knot theory theory tame embeddings circle space make general study including certain classification results tame embeddings solenoids space seen inverse limits tame embeddings circle applications topology dynamics discussed particular there tamely embedded solenoids sigma subset mathbb which strictly achiral since solenoids non planar contrasts sharply known there strictly achiral embedding subset mathbb compact polyhedron planar

Boju Jiang 1 ; Shicheng Wang 1 ; Hao Zheng 1 ; Qing Zhou 2

1 Department of Mathematics Peking University Beijing 100871, China
2 Department of Mathematics East China Normal University Shanghai 200030, China
@article{10_4064_fm214_1_4,
     author = {Boju Jiang and Shicheng Wang and Hao Zheng and Qing Zhou},
     title = {On tame embeddings of solenoids into 3-space},
     journal = {Fundamenta Mathematicae},
     pages = {57--75},
     publisher = {mathdoc},
     volume = {214},
     number = {1},
     year = {2011},
     doi = {10.4064/fm214-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm214-1-4/}
}
TY  - JOUR
AU  - Boju Jiang
AU  - Shicheng Wang
AU  - Hao Zheng
AU  - Qing Zhou
TI  - On tame embeddings of solenoids into 3-space
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 57
EP  - 75
VL  - 214
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm214-1-4/
DO  - 10.4064/fm214-1-4
LA  - en
ID  - 10_4064_fm214_1_4
ER  - 
%0 Journal Article
%A Boju Jiang
%A Shicheng Wang
%A Hao Zheng
%A Qing Zhou
%T On tame embeddings of solenoids into 3-space
%J Fundamenta Mathematicae
%D 2011
%P 57-75
%V 214
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm214-1-4/
%R 10.4064/fm214-1-4
%G en
%F 10_4064_fm214_1_4
Boju Jiang; Shicheng Wang; Hao Zheng; Qing Zhou. On tame embeddings of solenoids into 3-space. Fundamenta Mathematicae, Tome 214 (2011) no. 1, pp. 57-75. doi : 10.4064/fm214-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm214-1-4/

Cité par Sources :