Covering the real line with translates of a zero-dimensional compact set
Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 213-219
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct a compact set $C$ of Hausdorff dimension zero such that
${\rm cof}(\mathcal N)$ many translates of $C$ cover the real line. Hence it is
consistent with ZFC that less than continuum many translates of a
zero-dimensional compact set can cover the real line. This answers a
question of Dan Mauldin.
Keywords:
construct compact set hausdorff dimension zero cof mathcal many translates cover real line hence consistent zfc continuum many translates zero dimensional compact set cover real line answers question dan nbsp mauldin
Affiliations des auteurs :
András Máthé 1
@article{10_4064_fm213_3_2,
author = {Andr\'as M\'ath\'e},
title = {Covering the real line with translates of a zero-dimensional compact set},
journal = {Fundamenta Mathematicae},
pages = {213--219},
publisher = {mathdoc},
volume = {213},
number = {3},
year = {2011},
doi = {10.4064/fm213-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-2/}
}
TY - JOUR AU - András Máthé TI - Covering the real line with translates of a zero-dimensional compact set JO - Fundamenta Mathematicae PY - 2011 SP - 213 EP - 219 VL - 213 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-2/ DO - 10.4064/fm213-3-2 LA - en ID - 10_4064_fm213_3_2 ER -
András Máthé. Covering the real line with translates of a zero-dimensional compact set. Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 213-219. doi: 10.4064/fm213-3-2
Cité par Sources :