Covering the real line with translates of a zero-dimensional compact set
Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 213-219
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We construct a compact set $C$ of Hausdorff dimension zero such that
${\rm cof}(\mathcal N)$ many translates of $C$ cover the real line. Hence it is
consistent with ZFC that less than continuum many translates of a
zero-dimensional compact set can cover the real line. This answers a
question of Dan Mauldin.
Keywords:
construct compact set hausdorff dimension zero cof mathcal many translates cover real line hence consistent zfc continuum many translates zero dimensional compact set cover real line answers question dan nbsp mauldin
Affiliations des auteurs :
András Máthé 1
@article{10_4064_fm213_3_2,
author = {Andr\'as M\'ath\'e},
title = {Covering the real line with translates of a zero-dimensional compact set},
journal = {Fundamenta Mathematicae},
pages = {213--219},
year = {2011},
volume = {213},
number = {3},
doi = {10.4064/fm213-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-2/}
}
András Máthé. Covering the real line with translates of a zero-dimensional compact set. Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 213-219. doi: 10.4064/fm213-3-2
Cité par Sources :