Hausdorff dimension of scale-sparse Weierstrass-type functions
Fundamenta Mathematicae, Tome 213 (2011) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to calculate (deterministically) the Hausdorff dimension of the scale-sparse Weierstrass-type functions $W_s(x)\!:=\!\sum_{j\geq1}\rho^{-\gamma^js}g(\rho^{\gamma^j}{x\!+\!\theta_j})$, where $\rho>1$, $\gamma>1$ and $0 s 1$, and $g$ is a periodic Lipschitz function satisfying some additional appropriate conditions.
DOI : 10.4064/fm213-1-1
Mots-clés : paper calculate deterministically hausdorff dimension scale sparse weierstrass type functions sum geq rho gamma rho gamma theta where rho gamma periodic lipschitz function satisfying additional appropriate conditions

Abel Carvalho 1

1 Departamento de Matemática Universidade de Aveiro 3810-193 Aveiro, Portugal
@article{10_4064_fm213_1_1,
     author = {Abel Carvalho},
     title = {Hausdorff dimension of scale-sparse {Weierstrass-type} functions},
     journal = {Fundamenta Mathematicae},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {213},
     number = {1},
     year = {2011},
     doi = {10.4064/fm213-1-1},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm213-1-1/}
}
TY  - JOUR
AU  - Abel Carvalho
TI  - Hausdorff dimension of scale-sparse Weierstrass-type functions
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 1
EP  - 13
VL  - 213
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm213-1-1/
DO  - 10.4064/fm213-1-1
LA  - de
ID  - 10_4064_fm213_1_1
ER  - 
%0 Journal Article
%A Abel Carvalho
%T Hausdorff dimension of scale-sparse Weierstrass-type functions
%J Fundamenta Mathematicae
%D 2011
%P 1-13
%V 213
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm213-1-1/
%R 10.4064/fm213-1-1
%G de
%F 10_4064_fm213_1_1
Abel Carvalho. Hausdorff dimension of scale-sparse Weierstrass-type functions. Fundamenta Mathematicae, Tome 213 (2011) no. 1, pp. 1-13. doi : 10.4064/fm213-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm213-1-1/

Cité par Sources :