Lower and upper bounds for the provability of Herbrand consistency in weak arithmetics
Fundamenta Mathematicae, Tome 212 (2011) no. 3, pp. 191-216.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for $i\geq 1$, the arithmetic ${\rm I}\Delta_0 + \Omega_i$ does not prove a variant of its own Herbrand consistency restricted to the terms of depth in $(1+\varepsilon)\log^{i+2}$, where $\varepsilon$ is an arbitrarily small constant greater than zero.On the other hand, the provability holds for the set of terms of depths in $\log^{i+3}$.
DOI : 10.4064/fm212-3-1
Keywords: prove geq arithmetic delta omega does prove variant its own herbrand consistency restricted terms depth varepsilon log where varepsilon arbitrarily small constant greater zero other provability holds set terms depths log

Zofia Adamowicz 1 ; Konrad Zdanowski 1

1 Institute of Mathematics Polish Academy of Sciences 00-956 Warszawa, Poland
@article{10_4064_fm212_3_1,
     author = {Zofia Adamowicz and Konrad Zdanowski},
     title = {Lower and upper bounds for the provability of {Herbrand} consistency
in weak arithmetics},
     journal = {Fundamenta Mathematicae},
     pages = {191--216},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2011},
     doi = {10.4064/fm212-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-3-1/}
}
TY  - JOUR
AU  - Zofia Adamowicz
AU  - Konrad Zdanowski
TI  - Lower and upper bounds for the provability of Herbrand consistency
in weak arithmetics
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 191
EP  - 216
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm212-3-1/
DO  - 10.4064/fm212-3-1
LA  - en
ID  - 10_4064_fm212_3_1
ER  - 
%0 Journal Article
%A Zofia Adamowicz
%A Konrad Zdanowski
%T Lower and upper bounds for the provability of Herbrand consistency
in weak arithmetics
%J Fundamenta Mathematicae
%D 2011
%P 191-216
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm212-3-1/
%R 10.4064/fm212-3-1
%G en
%F 10_4064_fm212_3_1
Zofia Adamowicz; Konrad Zdanowski. Lower and upper bounds for the provability of Herbrand consistency
in weak arithmetics. Fundamenta Mathematicae, Tome 212 (2011) no. 3, pp. 191-216. doi : 10.4064/fm212-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm212-3-1/

Cité par Sources :