Lower and upper bounds for the provability of Herbrand consistency
in weak arithmetics
Fundamenta Mathematicae, Tome 212 (2011) no. 3, pp. 191-216
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for $i\geq 1$, the arithmetic ${\rm I}\Delta_0 + \Omega_i$
does not prove a variant of its own Herbrand consistency restricted to
the terms of depth in $(1+\varepsilon)\log^{i+2}$,
where $\varepsilon$ is an arbitrarily small constant greater than zero.On the other hand, the provability holds for the set of terms of depths
in $\log^{i+3}$.
Keywords:
prove geq arithmetic delta omega does prove variant its own herbrand consistency restricted terms depth varepsilon log where varepsilon arbitrarily small constant greater zero other provability holds set terms depths log
Affiliations des auteurs :
Zofia Adamowicz 1 ; Konrad Zdanowski 1
@article{10_4064_fm212_3_1,
author = {Zofia Adamowicz and Konrad Zdanowski},
title = {Lower and upper bounds for the provability of {Herbrand} consistency
in weak arithmetics},
journal = {Fundamenta Mathematicae},
pages = {191--216},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2011},
doi = {10.4064/fm212-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-3-1/}
}
TY - JOUR AU - Zofia Adamowicz AU - Konrad Zdanowski TI - Lower and upper bounds for the provability of Herbrand consistency in weak arithmetics JO - Fundamenta Mathematicae PY - 2011 SP - 191 EP - 216 VL - 212 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm212-3-1/ DO - 10.4064/fm212-3-1 LA - en ID - 10_4064_fm212_3_1 ER -
%0 Journal Article %A Zofia Adamowicz %A Konrad Zdanowski %T Lower and upper bounds for the provability of Herbrand consistency in weak arithmetics %J Fundamenta Mathematicae %D 2011 %P 191-216 %V 212 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm212-3-1/ %R 10.4064/fm212-3-1 %G en %F 10_4064_fm212_3_1
Zofia Adamowicz; Konrad Zdanowski. Lower and upper bounds for the provability of Herbrand consistency in weak arithmetics. Fundamenta Mathematicae, Tome 212 (2011) no. 3, pp. 191-216. doi: 10.4064/fm212-3-1
Cité par Sources :