A two-dimensional univoque set
Fundamenta Mathematicae, Tome 212 (2011) no. 2, pp. 175-189.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\bf J} \subset \mathbb{R}^2$ be the set of couples $(x,q)$ with $q>1$ such that $x$ has at least one representation of the form $x=\sum_{i=1}^{\infty} c_i q^{-i}$ with integer coefficients $c_i$ satisfying $0 \le c_i q$, $i \ge 1$. In this case we say that $(c_i)=c_1c_2\ldots$ is an expansion of $x$ in base $q$. Let $\bf U$ be the set of couples $(x,q) \in \bf J$ such that $x$ has exactly one expansion in base $q$. In this paper we deduce some topological and combinatorial properties of the set $\bf U$. We characterize the closure of $\bf U$, and we determine its Hausdorff dimension. For $(x,q) \in \bf J$, we also prove new properties of the lexicographically largest expansion of $x$ in base $q$.
DOI : 10.4064/fm212-2-4
Mots-clés : subset mathbb set couples has least representation form sum infty i integer coefficients satisfying say ldots expansion base set couples has exactly expansion base paper deduce topological combinatorial properties set characterize closure determine its hausdorff dimension prove properties lexicographically largest expansion base

Martijn de Vrie 1 ; Vilmos Komornik 2

1 Delft University of Technology Mekelweg 4 2628 CD Delft, the Netherlands
2 Département de Mathématique Université de Strasbourg 7 rue René Descartes 67084 Strasbourg Cedex, France
@article{10_4064_fm212_2_4,
     author = {Martijn de Vrie and Vilmos Komornik},
     title = {A two-dimensional univoque set},
     journal = {Fundamenta Mathematicae},
     pages = {175--189},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2011},
     doi = {10.4064/fm212-2-4},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-4/}
}
TY  - JOUR
AU  - Martijn de Vrie
AU  - Vilmos Komornik
TI  - A two-dimensional univoque set
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 175
EP  - 189
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-4/
DO  - 10.4064/fm212-2-4
LA  - fr
ID  - 10_4064_fm212_2_4
ER  - 
%0 Journal Article
%A Martijn de Vrie
%A Vilmos Komornik
%T A two-dimensional univoque set
%J Fundamenta Mathematicae
%D 2011
%P 175-189
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-4/
%R 10.4064/fm212-2-4
%G fr
%F 10_4064_fm212_2_4
Martijn de Vrie; Vilmos Komornik. A two-dimensional univoque set. Fundamenta Mathematicae, Tome 212 (2011) no. 2, pp. 175-189. doi : 10.4064/fm212-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-4/

Cité par Sources :