Connected economically metrizable spaces
Fundamenta Mathematicae, Tome 212 (2011) no. 2, pp. 145-173
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A topological space is non-separably connected if it is connected
but all of its connected separable subspaces are singletons.
We show that each connected sequential topological space $X$ is the image of a non-separably connected complete metric space
${\cal E} X$ under a monotone quotient map. The metric $d_{{\cal E} X}$ of the space ${\cal E} X$ is
economical in the sense that
for each infinite subspace $A\subset X$
the cardinality of the set $\{d_{{\cal E} X}(a,b):a,b\in A\}$
does not exceed the density of $A$,
$|d_{{\cal E} X}(A\times A)|\le{\rm dens}(A)$. The construction of the space ${\cal E} X$ determines a functor ${\cal E}:{\rm Top}\to{\rm Metr}$ from the category ${\rm Top}$ of topological spaces and their continuous maps into the category ${\rm Metr}$ of metric spaces and their non-expanding maps.
Keywords:
topological space non separably connected connected its connected separable subspaces singletons each connected sequential topological space image non separably connected complete metric space cal under monotone quotient map metric cal space cal economical sense each infinite subspace subset cardinality set cal does exceed density cal times dens construction space cal determines functor cal top metr category top topological spaces their continuous maps category metr metric spaces their non expanding maps
Affiliations des auteurs :
Taras Banakh 1 ; Myroslava Vovk 2 ; Michał Ryszard Wójcik 3
@article{10_4064_fm212_2_3,
author = {Taras Banakh and Myroslava Vovk and Micha{\l} Ryszard W\'ojcik},
title = {Connected economically metrizable spaces},
journal = {Fundamenta Mathematicae},
pages = {145--173},
publisher = {mathdoc},
volume = {212},
number = {2},
year = {2011},
doi = {10.4064/fm212-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-3/}
}
TY - JOUR AU - Taras Banakh AU - Myroslava Vovk AU - Michał Ryszard Wójcik TI - Connected economically metrizable spaces JO - Fundamenta Mathematicae PY - 2011 SP - 145 EP - 173 VL - 212 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-3/ DO - 10.4064/fm212-2-3 LA - en ID - 10_4064_fm212_2_3 ER -
Taras Banakh; Myroslava Vovk; Michał Ryszard Wójcik. Connected economically metrizable spaces. Fundamenta Mathematicae, Tome 212 (2011) no. 2, pp. 145-173. doi: 10.4064/fm212-2-3
Cité par Sources :