Connected economically metrizable spaces
Fundamenta Mathematicae, Tome 212 (2011) no. 2, pp. 145-173.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A topological space is non-separably connected if it is connected but all of its connected separable subspaces are singletons. We show that each connected sequential topological space $X$ is the image of a non-separably connected complete metric space ${\cal E} X$ under a monotone quotient map. The metric $d_{{\cal E} X}$ of the space ${\cal E} X$ is economical in the sense that for each infinite subspace $A\subset X$ the cardinality of the set $\{d_{{\cal E} X}(a,b):a,b\in A\}$ does not exceed the density of $A$, $|d_{{\cal E} X}(A\times A)|\le{\rm dens}(A)$. The construction of the space ${\cal E} X$ determines a functor ${\cal E}:{\rm Top}\to{\rm Metr}$ from the category ${\rm Top}$ of topological spaces and their continuous maps into the category ${\rm Metr}$ of metric spaces and their non-expanding maps.
DOI : 10.4064/fm212-2-3
Keywords: topological space non separably connected connected its connected separable subspaces singletons each connected sequential topological space image non separably connected complete metric space cal under monotone quotient map metric cal space cal economical sense each infinite subspace subset cardinality set cal does exceed density cal times dens construction space cal determines functor cal top metr category top topological spaces their continuous maps category metr metric spaces their non expanding maps

Taras Banakh 1 ; Myroslava Vovk 2 ; Michał Ryszard Wójcik 3

1 Instytut Matematyki Uniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego Kielce, Poland and Department of Mathematics Ivan Franko National University of Lviv Universytetska 1 79000, Lviv, Ukraine
2 National University Lvivska Politechnika Lviv, Ukraine
3 Department of Mathematics University of Louisville Louisville, KY, U.S.A. and Institute of Geography and Regional Development University of Wrocław 50-137 Wrocław, Poland
@article{10_4064_fm212_2_3,
     author = {Taras Banakh and Myroslava Vovk and Micha{\l} Ryszard W\'ojcik},
     title = {Connected economically metrizable spaces},
     journal = {Fundamenta Mathematicae},
     pages = {145--173},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2011},
     doi = {10.4064/fm212-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-3/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Myroslava Vovk
AU  - Michał Ryszard Wójcik
TI  - Connected economically metrizable spaces
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 145
EP  - 173
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-3/
DO  - 10.4064/fm212-2-3
LA  - en
ID  - 10_4064_fm212_2_3
ER  - 
%0 Journal Article
%A Taras Banakh
%A Myroslava Vovk
%A Michał Ryszard Wójcik
%T Connected economically metrizable spaces
%J Fundamenta Mathematicae
%D 2011
%P 145-173
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-3/
%R 10.4064/fm212-2-3
%G en
%F 10_4064_fm212_2_3
Taras Banakh; Myroslava Vovk; Michał Ryszard Wójcik. Connected economically metrizable spaces. Fundamenta Mathematicae, Tome 212 (2011) no. 2, pp. 145-173. doi : 10.4064/fm212-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-3/

Cité par Sources :