On splitting infinite-fold covers
Fundamenta Mathematicae, Tome 212 (2011) no. 2, pp. 95-127.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a set, $\kappa$ be a cardinal number and let ${\cal H}$ be a family of subsets of $X$ which covers each $x\in X$ at least $\kappa$-fold. What assumptions can ensure that ${\cal H}$ can be decomposed into $\kappa$ many disjoint subcovers?We examine this problem under various assumptions on the set $X$ and on the cover ${\cal H}$: among other situations, we consider covers of topological spaces by closed sets, interval covers of linearly ordered sets and covers of ${\mathbb R}^{n}$ by polyhedra and by arbitrary convex sets. We focus on problems with $\kappa$ infinite. Besides numerous positive and negative results, many questions turn out to be independent of the usual axioms of set theory.
DOI : 10.4064/fm212-2-1
Keywords: set kappa cardinal number cal family subsets which covers each least kappa fold what assumptions ensure cal decomposed kappa many disjoint subcovers examine problem under various assumptions set cover nbsp cal among other situations consider covers topological spaces closed sets interval covers linearly ordered sets covers mathbb polyhedra arbitrary convex sets focus problems kappa infinite besides numerous positive negative results many questions turn out independent usual axioms set theory

Márton Elekes 1 ; Tamás Mátrai 1 ; Lajos Soukup 1

1 Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences P.O. Box 127, H-1364 Budapest, Hungary
@article{10_4064_fm212_2_1,
     author = {M\'arton Elekes and Tam\'as M\'atrai and Lajos Soukup},
     title = {On splitting infinite-fold covers},
     journal = {Fundamenta Mathematicae},
     pages = {95--127},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2011},
     doi = {10.4064/fm212-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-1/}
}
TY  - JOUR
AU  - Márton Elekes
AU  - Tamás Mátrai
AU  - Lajos Soukup
TI  - On splitting infinite-fold covers
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 95
EP  - 127
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-1/
DO  - 10.4064/fm212-2-1
LA  - en
ID  - 10_4064_fm212_2_1
ER  - 
%0 Journal Article
%A Márton Elekes
%A Tamás Mátrai
%A Lajos Soukup
%T On splitting infinite-fold covers
%J Fundamenta Mathematicae
%D 2011
%P 95-127
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-1/
%R 10.4064/fm212-2-1
%G en
%F 10_4064_fm212_2_1
Márton Elekes; Tamás Mátrai; Lajos Soukup. On splitting infinite-fold covers. Fundamenta Mathematicae, Tome 212 (2011) no. 2, pp. 95-127. doi : 10.4064/fm212-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm212-2-1/

Cité par Sources :