Multifractal analysis for Birkhoff averages on Lalley–Gatzouras repellers
Fundamenta Mathematicae, Tome 212 (2011) no. 1, pp. 71-93
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the multifractal analysis for Birkhoff averages of continuous potentials on a class of non-conformal repellers corresponding to the self-affine limit sets studied by Lalley and Gatzouras. A conditional variational principle is given for the Hausdorff dimension of the set of points for which the Birkhoff averages converge to a given value. This extends a result of Barral and Mensi to certain non-conformal maps with a measure dependent Lyapunov exponent.
Keywords:
consider multifractal analysis birkhoff averages continuous potentials class non conformal repellers corresponding self affine limit sets studied lalley gatzouras conditional variational principle given hausdorff dimension set points which birkhoff averages converge given value extends result barral mensi certain non conformal maps measure dependent lyapunov exponent
Affiliations des auteurs :
Henry W. J. Reeve  1
@article{10_4064_fm212_1_5,
author = {Henry W. J. Reeve},
title = {Multifractal analysis for {Birkhoff} averages on {Lalley{\textendash}Gatzouras} repellers},
journal = {Fundamenta Mathematicae},
pages = {71--93},
year = {2011},
volume = {212},
number = {1},
doi = {10.4064/fm212-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-5/}
}
TY - JOUR AU - Henry W. J. Reeve TI - Multifractal analysis for Birkhoff averages on Lalley–Gatzouras repellers JO - Fundamenta Mathematicae PY - 2011 SP - 71 EP - 93 VL - 212 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-5/ DO - 10.4064/fm212-1-5 LA - en ID - 10_4064_fm212_1_5 ER -
Henry W. J. Reeve. Multifractal analysis for Birkhoff averages on Lalley–Gatzouras repellers. Fundamenta Mathematicae, Tome 212 (2011) no. 1, pp. 71-93. doi: 10.4064/fm212-1-5
Cité par Sources :