Lipschitz and uniform embeddings into $\ell _{\infty} $
Fundamenta Mathematicae, Tome 212 (2011) no. 1, pp. 53-69.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that there is no uniformly continuous selection of the quotient map $Q:\ell _\infty \to \ell _\infty //c_0$ relative to the unit ball. We use this to construct an answer to a problem of Benyamini and Lindenstrauss; there is a Banach space $X$ such that there is a no Lipschitz retraction of $X^{**}$ onto $X$; in fact there is no uniformly continuous retraction from $B_{X^{**}}$ onto $B_X$.
DOI : 10.4064/fm212-1-4
Mots-clés : there uniformly continuous selection quotient map ell infty ell infty relative unit ball construct answer problem benyamini lindenstrauss there banach space there lipschitz retraction ** there uniformly continuous retraction **

N. J. Kalton 1

1 Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A.
@article{10_4064_fm212_1_4,
     author = {N. J. Kalton},
     title = {Lipschitz and uniform embeddings into $\ell _{\infty} $},
     journal = {Fundamenta Mathematicae},
     pages = {53--69},
     publisher = {mathdoc},
     volume = {212},
     number = {1},
     year = {2011},
     doi = {10.4064/fm212-1-4},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-4/}
}
TY  - JOUR
AU  - N. J. Kalton
TI  - Lipschitz and uniform embeddings into $\ell _{\infty} $
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 53
EP  - 69
VL  - 212
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-4/
DO  - 10.4064/fm212-1-4
LA  - de
ID  - 10_4064_fm212_1_4
ER  - 
%0 Journal Article
%A N. J. Kalton
%T Lipschitz and uniform embeddings into $\ell _{\infty} $
%J Fundamenta Mathematicae
%D 2011
%P 53-69
%V 212
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-4/
%R 10.4064/fm212-1-4
%G de
%F 10_4064_fm212_1_4
N. J. Kalton. Lipschitz and uniform embeddings into $\ell _{\infty} $. Fundamenta Mathematicae, Tome 212 (2011) no. 1, pp. 53-69. doi : 10.4064/fm212-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-4/

Cité par Sources :