Lipschitz and uniform embeddings into $\ell _{\infty} $
Fundamenta Mathematicae, Tome 212 (2011) no. 1, pp. 53-69
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that there is no uniformly continuous selection of the quotient map $Q:\ell _\infty \to \ell _\infty //c_0$ relative to the unit ball. We use this to construct an answer to a problem of Benyamini and Lindenstrauss; there is a Banach space $X$ such that there is a no Lipschitz retraction of $X^{**}$ onto $X$; in fact there is no uniformly continuous retraction from $B_{X^{**}}$ onto $B_X$.
Mots-clés :
there uniformly continuous selection quotient map ell infty ell infty relative unit ball construct answer problem benyamini lindenstrauss there banach space there lipschitz retraction ** there uniformly continuous retraction **
Affiliations des auteurs :
N. J. Kalton 1
@article{10_4064_fm212_1_4,
author = {N. J. Kalton},
title = {Lipschitz and uniform embeddings into $\ell _{\infty} $},
journal = {Fundamenta Mathematicae},
pages = {53--69},
publisher = {mathdoc},
volume = {212},
number = {1},
year = {2011},
doi = {10.4064/fm212-1-4},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-4/}
}
N. J. Kalton. Lipschitz and uniform embeddings into $\ell _{\infty} $. Fundamenta Mathematicae, Tome 212 (2011) no. 1, pp. 53-69. doi: 10.4064/fm212-1-4
Cité par Sources :