Fixed-point free maps of Euclidean spaces
Fundamenta Mathematicae, Tome 212 (2011) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Our main result states that every fixed-point free continuous self-map of ${\mathbb R}^{n}$ is colorable. This result can be reformulated as follows: A continuous map $f: {\mathbb R}^{n}\to {\mathbb R}^{n}$ is fixed-point free iff $\widetilde f: \beta {\mathbb R}^{n}\to \beta {\mathbb R}^{n}$ is fixed-point free. We also obtain a generalization of this fact and present some examples
DOI : 10.4064/fm212-1-1
Keywords: main result states every fixed point continuous self map mathbb colorable result reformulated follows continuous map mathbb mathbb fixed point widetilde beta mathbb beta mathbb fixed point obtain generalization present examples

R. Z. Buzyakova 1 ; A. Chigogidze 1

1 Department of Mathematics and Statistics The University of North Carolina at Greensboro Greensboro, NC 27402, U.S.A.
@article{10_4064_fm212_1_1,
     author = {R. Z. Buzyakova and A. Chigogidze},
     title = {Fixed-point free maps of {Euclidean} spaces},
     journal = {Fundamenta Mathematicae},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {212},
     number = {1},
     year = {2011},
     doi = {10.4064/fm212-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-1/}
}
TY  - JOUR
AU  - R. Z. Buzyakova
AU  - A. Chigogidze
TI  - Fixed-point free maps of Euclidean spaces
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 1
EP  - 16
VL  - 212
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-1/
DO  - 10.4064/fm212-1-1
LA  - en
ID  - 10_4064_fm212_1_1
ER  - 
%0 Journal Article
%A R. Z. Buzyakova
%A A. Chigogidze
%T Fixed-point free maps of Euclidean spaces
%J Fundamenta Mathematicae
%D 2011
%P 1-16
%V 212
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-1/
%R 10.4064/fm212-1-1
%G en
%F 10_4064_fm212_1_1
R. Z. Buzyakova; A. Chigogidze. Fixed-point free maps of Euclidean spaces. Fundamenta Mathematicae, Tome 212 (2011) no. 1, pp. 1-16. doi : 10.4064/fm212-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm212-1-1/

Cité par Sources :