On the uniqueness of periodic decomposition
Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 225-244.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $a_1, \ldots, a_k$ be arbitrary nonzero real numbers. An $(a_1, \ldots, a_k)$-decomposition of a function $f:\mathbb{R} \to \mathbb{R}$ is a sum $f_1 + \cdots + f_k = f$ where $f_i: \mathbb{R} \to \mathbb{R}$ is an $a_i$-periodic function. Such a decomposition is not unique because there are several solutions of the equation $h_1 + \cdots + h_k = 0$ with $h_i : \mathbb{R} \to \mathbb{R}$ $a_i$-periodic. We will give solutions of this equation with a certain simple structure (trivial solutions) and study whether there exist other solutions or not. If not, we say that the $(a_1, \ldots, a_k)$-decomposition is essentially unique. We characterize those periods for which essential uniqueness holds.
DOI : 10.4064/fm211-3-2
Keywords: ldots arbitrary nonzero real numbers ldots decomposition function mathbb mathbb sum cdots where mathbb mathbb i periodic function decomposition unique because there several solutions equation cdots mathbb mathbb i periodic solutions equation certain simple structure trivial solutions study whether there exist other solutions say ldots decomposition essentially unique characterize those periods which essential uniqueness holds

Viktor Harangi 1

1 Department of Analysis Eötvös Loránd University Pázmány Péter sétány 1//c H-1117 Budapest, Hungary
@article{10_4064_fm211_3_2,
     author = {Viktor Harangi},
     title = {On the uniqueness of periodic decomposition},
     journal = {Fundamenta Mathematicae},
     pages = {225--244},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2011},
     doi = {10.4064/fm211-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-2/}
}
TY  - JOUR
AU  - Viktor Harangi
TI  - On the uniqueness of periodic decomposition
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 225
EP  - 244
VL  - 211
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-2/
DO  - 10.4064/fm211-3-2
LA  - en
ID  - 10_4064_fm211_3_2
ER  - 
%0 Journal Article
%A Viktor Harangi
%T On the uniqueness of periodic decomposition
%J Fundamenta Mathematicae
%D 2011
%P 225-244
%V 211
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-2/
%R 10.4064/fm211-3-2
%G en
%F 10_4064_fm211_3_2
Viktor Harangi. On the uniqueness of periodic decomposition. Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 225-244. doi : 10.4064/fm211-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-2/

Cité par Sources :