On the uniqueness of periodic decomposition
Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 225-244
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $a_1, \ldots, a_k$ be arbitrary nonzero real numbers.
An $(a_1, \ldots, a_k)$-decomposition of a function
$f:\mathbb{R} \to \mathbb{R}$ is
a sum $f_1 + \cdots + f_k = f$ where $f_i: \mathbb{R} \to \mathbb{R}$ is an $a_i$-periodic function. Such a decomposition is not unique because there are several solutions of the equation
$h_1 + \cdots + h_k = 0$ with $h_i : \mathbb{R} \to \mathbb{R}$
$a_i$-periodic.
We will give solutions of this equation with a certain simple structure
(trivial solutions) and study whether there exist other solutions or not.
If not, we say that the $(a_1, \ldots, a_k)$-decomposition is essentially unique.
We characterize those periods for which essential uniqueness holds.
Keywords:
ldots arbitrary nonzero real numbers ldots decomposition function mathbb mathbb sum cdots where mathbb mathbb i periodic function decomposition unique because there several solutions equation cdots mathbb mathbb i periodic solutions equation certain simple structure trivial solutions study whether there exist other solutions say ldots decomposition essentially unique characterize those periods which essential uniqueness holds
Affiliations des auteurs :
Viktor Harangi  1
@article{10_4064_fm211_3_2,
author = {Viktor Harangi},
title = {On the uniqueness of periodic decomposition},
journal = {Fundamenta Mathematicae},
pages = {225--244},
year = {2011},
volume = {211},
number = {3},
doi = {10.4064/fm211-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-2/}
}
Viktor Harangi. On the uniqueness of periodic decomposition. Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 225-244. doi: 10.4064/fm211-3-2
Cité par Sources :