Borel extensions of Baire measures in ZFC
Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 197-223
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove:1) Every Baire measure on the Kojman–Shelah Dowker space
admits a Borel extension.
2) If the continuum is not real-valued-measurable then every
Baire measure on M. E. Rudin's Dowker space admits a
Borel extension. Consequently, Balogh's space remains the only
candidate to be a ZFC counterexample to the measure extension
problem of the three presently known ZFC Dowker spaces.
Keywords:
prove every baire measure kojman shelah dowker space admits borel extension continuum real valued measurable every baire measure rudins dowker space admits borel extension consequently baloghs space remains only candidate zfc counterexample measure extension problem three presently known zfc dowker spaces
Affiliations des auteurs :
Menachem Kojman 1 ; Henryk Michalewski 2
@article{10_4064_fm211_3_1,
author = {Menachem Kojman and Henryk Michalewski},
title = {Borel extensions of {Baire} measures in {ZFC}},
journal = {Fundamenta Mathematicae},
pages = {197--223},
publisher = {mathdoc},
volume = {211},
number = {3},
year = {2011},
doi = {10.4064/fm211-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-1/}
}
TY - JOUR AU - Menachem Kojman AU - Henryk Michalewski TI - Borel extensions of Baire measures in ZFC JO - Fundamenta Mathematicae PY - 2011 SP - 197 EP - 223 VL - 211 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-1/ DO - 10.4064/fm211-3-1 LA - en ID - 10_4064_fm211_3_1 ER -
Menachem Kojman; Henryk Michalewski. Borel extensions of Baire measures in ZFC. Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 197-223. doi: 10.4064/fm211-3-1
Cité par Sources :