Parametrized Borsuk–Ulam problem for projective space bundles
Fundamenta Mathematicae, Tome 211 (2011) no. 2, pp. 135-147.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\pi: E \to B$ be a fiber bundle with fiber having the mod~2 cohomology algebra of a real or a complex projective space and let $\pi': E' \to B$ be a vector bundle such that $\mathbb{Z}_2$ acts fiber preserving and freely on $E$ and $E'-0$, where $0$ stands for the zero section of the bundle $\pi':E' \to B$. For a fiber preserving $\mathbb{Z}_2$-equivariant map $f:E \to E'$, we estimate the cohomological dimension of the zero set $Z_f = \{x \in E \mid f(x)= 0\}.$ As an application, we also estimate the cohomological dimension of the $\mathbb{Z}_2$-coincidence set $A_f=\{x \in E\mid f(x) = f(T(x)) \}$ of a fiber preserving map $f:E \to E'$.
DOI : 10.4064/fm211-2-2
Keywords: fiber bundle fiber having mod cohomology algebra real complex projective space vector bundle mathbb acts fiber preserving freely e where stands zero section bundle fiber preserving mathbb equivariant map estimate cohomological dimension zero set mid application estimate cohomological dimension mathbb coincidence set mid fiber preserving map

Mahender Singh 1

1 Institute of Mathematical Sciences C I T Campus Taramani, Chennai 600113, India
@article{10_4064_fm211_2_2,
     author = {Mahender Singh},
     title = {Parametrized {Borsuk{\textendash}Ulam} problem for projective space bundles},
     journal = {Fundamenta Mathematicae},
     pages = {135--147},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2011},
     doi = {10.4064/fm211-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-2-2/}
}
TY  - JOUR
AU  - Mahender Singh
TI  - Parametrized Borsuk–Ulam problem for projective space bundles
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 135
EP  - 147
VL  - 211
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm211-2-2/
DO  - 10.4064/fm211-2-2
LA  - en
ID  - 10_4064_fm211_2_2
ER  - 
%0 Journal Article
%A Mahender Singh
%T Parametrized Borsuk–Ulam problem for projective space bundles
%J Fundamenta Mathematicae
%D 2011
%P 135-147
%V 211
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm211-2-2/
%R 10.4064/fm211-2-2
%G en
%F 10_4064_fm211_2_2
Mahender Singh. Parametrized Borsuk–Ulam problem for projective space bundles. Fundamenta Mathematicae, Tome 211 (2011) no. 2, pp. 135-147. doi : 10.4064/fm211-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm211-2-2/

Cité par Sources :