Parametrized Borsuk–Ulam problem for projective space bundles
Fundamenta Mathematicae, Tome 211 (2011) no. 2, pp. 135-147
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\pi: E \to B$ be a fiber bundle with fiber having the mod~2 cohomology algebra of a real or a complex projective space and let $\pi': E' \to B$ be a vector bundle such that $\mathbb{Z}_2$ acts fiber preserving and freely on $E$ and $E'-0$, where $0$ stands for the zero section of the bundle $\pi':E' \to B$. For a fiber preserving $\mathbb{Z}_2$-equivariant map $f:E \to E'$, we estimate the cohomological dimension of the zero set $Z_f = \{x \in E \mid f(x)= 0\}.$ As an application, we also estimate the cohomological dimension of the $\mathbb{Z}_2$-coincidence set $A_f=\{x \in E\mid f(x) = f(T(x)) \}$ of a fiber preserving map $f:E \to E'$.
Keywords:
fiber bundle fiber having mod cohomology algebra real complex projective space vector bundle mathbb acts fiber preserving freely e where stands zero section bundle fiber preserving mathbb equivariant map estimate cohomological dimension zero set mid application estimate cohomological dimension mathbb coincidence set mid fiber preserving map
Affiliations des auteurs :
Mahender Singh 1
@article{10_4064_fm211_2_2,
author = {Mahender Singh},
title = {Parametrized {Borsuk{\textendash}Ulam} problem for projective space bundles},
journal = {Fundamenta Mathematicae},
pages = {135--147},
publisher = {mathdoc},
volume = {211},
number = {2},
year = {2011},
doi = {10.4064/fm211-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-2-2/}
}
TY - JOUR AU - Mahender Singh TI - Parametrized Borsuk–Ulam problem for projective space bundles JO - Fundamenta Mathematicae PY - 2011 SP - 135 EP - 147 VL - 211 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm211-2-2/ DO - 10.4064/fm211-2-2 LA - en ID - 10_4064_fm211_2_2 ER -
Mahender Singh. Parametrized Borsuk–Ulam problem for projective space bundles. Fundamenta Mathematicae, Tome 211 (2011) no. 2, pp. 135-147. doi: 10.4064/fm211-2-2
Cité par Sources :