The classification of circle-like continua
that admit expansive homeomorphisms
Fundamenta Mathematicae, Tome 211 (2011) no. 2, pp. 101-133
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A homeomorphism $h:X\rightarrow X$ of a compactum $X$ is expansive provided
that for some fixed $c>0$ and every $x, y\in X\ (x\neq y)$ there exists an
integer $n$, dependent only on $x$ and $y$, such that
$\hbox{d}(h^n(x),h^n(y))>c$. It is shown that if $X$ is a
solenoid that admits an expansive homeomorphism, then $X$ is
homeomorphic to a regular solenoid. It can then be concluded that
a circle-like continuum admits an expansive homeomorphism if and
only if it is homeomorphic to a regular solenoid.
Keywords:
homeomorphism rightarrow compactum expansive provided fixed every neq there exists integer dependent only hbox shown solenoid admits expansive homeomorphism homeomorphic regular solenoid concluded circle like continuum admits expansive homeomorphism only homeomorphic regular solenoid
Affiliations des auteurs :
Christopher Mouron 1
@article{10_4064_fm211_2_1,
author = {Christopher Mouron},
title = {The classification of circle-like continua
that admit expansive homeomorphisms},
journal = {Fundamenta Mathematicae},
pages = {101--133},
year = {2011},
volume = {211},
number = {2},
doi = {10.4064/fm211-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-2-1/}
}
TY - JOUR AU - Christopher Mouron TI - The classification of circle-like continua that admit expansive homeomorphisms JO - Fundamenta Mathematicae PY - 2011 SP - 101 EP - 133 VL - 211 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm211-2-1/ DO - 10.4064/fm211-2-1 LA - en ID - 10_4064_fm211_2_1 ER -
Christopher Mouron. The classification of circle-like continua that admit expansive homeomorphisms. Fundamenta Mathematicae, Tome 211 (2011) no. 2, pp. 101-133. doi: 10.4064/fm211-2-1
Cité par Sources :