The real field with the rational points of an elliptic curve
Fundamenta Mathematicae, Tome 211 (2011) no. 1, pp. 15-40
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the expansion of the real field by the group of rational points of an elliptic curve over the rational numbers. We prove a completeness result, followed by a quantifier elimination result. Moreover we show that open sets definable in that structure are semialgebraic.
Keywords:
consider expansion real field group rational points elliptic curve rational numbers prove completeness result followed quantifier elimination result moreover sets definable structure semialgebraic
Affiliations des auteurs :
Ayhan Günaydın 1 ; Philipp Hieronymi 2
@article{10_4064_fm211_1_2,
author = {Ayhan G\"unayd{\i}n and Philipp Hieronymi},
title = {The real field with the rational points of an elliptic curve},
journal = {Fundamenta Mathematicae},
pages = {15--40},
publisher = {mathdoc},
volume = {211},
number = {1},
year = {2011},
doi = {10.4064/fm211-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-1-2/}
}
TY - JOUR AU - Ayhan Günaydın AU - Philipp Hieronymi TI - The real field with the rational points of an elliptic curve JO - Fundamenta Mathematicae PY - 2011 SP - 15 EP - 40 VL - 211 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm211-1-2/ DO - 10.4064/fm211-1-2 LA - en ID - 10_4064_fm211_1_2 ER -
Ayhan Günaydın; Philipp Hieronymi. The real field with the rational points of an elliptic curve. Fundamenta Mathematicae, Tome 211 (2011) no. 1, pp. 15-40. doi: 10.4064/fm211-1-2
Cité par Sources :