Optimal matrices of partitions
and an application to Souslin trees
Fundamenta Mathematicae, Tome 210 (2010) no. 2, pp. 111-131
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The basic result of this note is a statement about the existence of families of partitions of the set of natural numbers with some useful properties, the $n$-optimal matrices of partitions. We use this to improve a decomposition result for strongly homogeneous Souslin trees. The latter is in turn applied to separate strong notions of rigidity of Souslin trees, thereby answering a considerable portion of a question of Fuchs and Hamkins.
Keywords:
basic result note statement about existence families partitions set natural numbers useful properties n optimal matrices partitions improve decomposition result strongly homogeneous souslin trees latter turn applied separate strong notions rigidity souslin trees thereby answering considerable portion question fuchs hamkins
Affiliations des auteurs :
Gido Scharfenberger-Fabian 1
@article{10_4064_fm210_2_2,
author = {Gido Scharfenberger-Fabian},
title = {Optimal matrices of partitions
and an application to {Souslin} trees},
journal = {Fundamenta Mathematicae},
pages = {111--131},
publisher = {mathdoc},
volume = {210},
number = {2},
year = {2010},
doi = {10.4064/fm210-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm210-2-2/}
}
TY - JOUR AU - Gido Scharfenberger-Fabian TI - Optimal matrices of partitions and an application to Souslin trees JO - Fundamenta Mathematicae PY - 2010 SP - 111 EP - 131 VL - 210 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm210-2-2/ DO - 10.4064/fm210-2-2 LA - en ID - 10_4064_fm210_2_2 ER -
Gido Scharfenberger-Fabian. Optimal matrices of partitions and an application to Souslin trees. Fundamenta Mathematicae, Tome 210 (2010) no. 2, pp. 111-131. doi: 10.4064/fm210-2-2
Cité par Sources :