The orbits of the Hurwitz action of the braid groups on the standard generators
Fundamenta Mathematicae, Tome 210 (2010) no. 1, pp. 63-71.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Hurwitz action of the $n$-braid group $B_n$ on the $n$-fold direct product $(B_m)^n$ of the $m$-braid group $B_m$ is studied. We show that the orbit of any $n$- tuple of the $n$ standard generators of $B_{n+1}$ consists of the $(n-1)$th powers of $n+1$ elements.
DOI : 10.4064/fm210-1-3
Keywords: hurwitz action n braid group n fold direct product m braid group studied orbit n tuple standard generators consists n powers elements

Yoshiro Yaguchi 1

1 Department of Mathematics Hiroshima University Higashi-Hiroshima, 739-8526 Japan
@article{10_4064_fm210_1_3,
     author = {Yoshiro Yaguchi},
     title = {The orbits of the {Hurwitz} action of the braid groups
 on the standard generators},
     journal = {Fundamenta Mathematicae},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {210},
     number = {1},
     year = {2010},
     doi = {10.4064/fm210-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-3/}
}
TY  - JOUR
AU  - Yoshiro Yaguchi
TI  - The orbits of the Hurwitz action of the braid groups
 on the standard generators
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 63
EP  - 71
VL  - 210
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-3/
DO  - 10.4064/fm210-1-3
LA  - en
ID  - 10_4064_fm210_1_3
ER  - 
%0 Journal Article
%A Yoshiro Yaguchi
%T The orbits of the Hurwitz action of the braid groups
 on the standard generators
%J Fundamenta Mathematicae
%D 2010
%P 63-71
%V 210
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-3/
%R 10.4064/fm210-1-3
%G en
%F 10_4064_fm210_1_3
Yoshiro Yaguchi. The orbits of the Hurwitz action of the braid groups
 on the standard generators. Fundamenta Mathematicae, Tome 210 (2010) no. 1, pp. 63-71. doi : 10.4064/fm210-1-3. http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-3/

Cité par Sources :