The absolute continuity of the invariant measure of random iterated function systems with overlaps
Fundamenta Mathematicae, Tome 210 (2010) no. 1, pp. 47-62.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider iterated function systems on the interval with random perturbation. Let $Y_\varepsilon$ be uniformly distributed in $[1- \varepsilon, 1 + \varepsilon]$ and let $f_i \in C^{1+\alpha}$ be contractions with fixpoints $a_i$. We consider the iterated function system $\{ Y_\varepsilon f_i + a_i (1 - Y_\varepsilon) \}_{i=1}^n$, where each of the maps is chosen with probability $p_i$. It is shown that the invariant density is in $L^2$ and its $L^2$ norm does not grow faster than $1/\sqrt{\varepsilon}$ as $\varepsilon$ vanishes.The proof relies on defining a piecewise hyperbolic dynamical system on the cube with an SRB-measure whose projection is the density of the iterated function system.
DOI : 10.4064/fm210-1-2
Keywords: consider iterated function systems interval random perturbation varepsilon uniformly distributed varepsilon varepsilon alpha contractions fixpoints consider iterated function system varepsilon varepsilon where each maps chosen probability shown invariant density its norm does grow faster sqrt varepsilon varepsilon vanishes proof relies defining piecewise hyperbolic dynamical system cube srb measure whose projection density iterated function system

Balázs Bárány 1 ; Tomas Persson 2

1 Department of Stochastics Institute of Mathematics Technical University of Budapest P.O. Box 91 1521 Budapest, Hungary
2 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_fm210_1_2,
     author = {Bal\'azs B\'ar\'any and Tomas Persson},
     title = {The absolute continuity of the invariant 
 measure of random iterated function systems with overlaps},
     journal = {Fundamenta Mathematicae},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {210},
     number = {1},
     year = {2010},
     doi = {10.4064/fm210-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-2/}
}
TY  - JOUR
AU  - Balázs Bárány
AU  - Tomas Persson
TI  - The absolute continuity of the invariant 
 measure of random iterated function systems with overlaps
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 47
EP  - 62
VL  - 210
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-2/
DO  - 10.4064/fm210-1-2
LA  - en
ID  - 10_4064_fm210_1_2
ER  - 
%0 Journal Article
%A Balázs Bárány
%A Tomas Persson
%T The absolute continuity of the invariant 
 measure of random iterated function systems with overlaps
%J Fundamenta Mathematicae
%D 2010
%P 47-62
%V 210
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-2/
%R 10.4064/fm210-1-2
%G en
%F 10_4064_fm210_1_2
Balázs Bárány; Tomas Persson. The absolute continuity of the invariant 
 measure of random iterated function systems with overlaps. Fundamenta Mathematicae, Tome 210 (2010) no. 1, pp. 47-62. doi : 10.4064/fm210-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-2/

Cité par Sources :