The absolute continuity of the invariant
measure of random iterated function systems with overlaps
Fundamenta Mathematicae, Tome 210 (2010) no. 1, pp. 47-62
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider iterated function systems on the interval with random
perturbation. Let $Y_\varepsilon$ be uniformly distributed in $[1-
\varepsilon, 1 + \varepsilon]$ and let $f_i \in C^{1+\alpha}$ be
contractions with fixpoints $a_i$. We consider the iterated function
system $\{ Y_\varepsilon f_i + a_i (1 - Y_\varepsilon) \}_{i=1}^n$,
where each of the maps is chosen with probability $p_i$. It is shown
that the invariant density is in $L^2$ and its $L^2$ norm does not
grow faster than $1/\sqrt{\varepsilon}$ as $\varepsilon$ vanishes.The proof relies on defining a piecewise hyperbolic dynamical system
on the cube with an SRB-measure whose projection
is the density of the iterated function system.
Keywords:
consider iterated function systems interval random perturbation varepsilon uniformly distributed varepsilon varepsilon alpha contractions fixpoints consider iterated function system varepsilon varepsilon where each maps chosen probability shown invariant density its norm does grow faster sqrt varepsilon varepsilon vanishes proof relies defining piecewise hyperbolic dynamical system cube srb measure whose projection density iterated function system
Affiliations des auteurs :
Balázs Bárány 1 ; Tomas Persson 2
@article{10_4064_fm210_1_2,
author = {Bal\'azs B\'ar\'any and Tomas Persson},
title = {The absolute continuity of the invariant
measure of random iterated function systems with overlaps},
journal = {Fundamenta Mathematicae},
pages = {47--62},
publisher = {mathdoc},
volume = {210},
number = {1},
year = {2010},
doi = {10.4064/fm210-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-2/}
}
TY - JOUR AU - Balázs Bárány AU - Tomas Persson TI - The absolute continuity of the invariant measure of random iterated function systems with overlaps JO - Fundamenta Mathematicae PY - 2010 SP - 47 EP - 62 VL - 210 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-2/ DO - 10.4064/fm210-1-2 LA - en ID - 10_4064_fm210_1_2 ER -
%0 Journal Article %A Balázs Bárány %A Tomas Persson %T The absolute continuity of the invariant measure of random iterated function systems with overlaps %J Fundamenta Mathematicae %D 2010 %P 47-62 %V 210 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm210-1-2/ %R 10.4064/fm210-1-2 %G en %F 10_4064_fm210_1_2
Balázs Bárány; Tomas Persson. The absolute continuity of the invariant measure of random iterated function systems with overlaps. Fundamenta Mathematicae, Tome 210 (2010) no. 1, pp. 47-62. doi: 10.4064/fm210-1-2
Cité par Sources :