Homeomorphisms of fractafolds
Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 177-191
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We classify all homeomorphisms of the double cover of the Sierpiński
gasket in $n$ dimensions. We show that there is a unique homeomorphism
mapping any cell to any other cell with prescribed mapping of boundary
points, and any homeomorphism is either a permutation of a finite
number of topological cells or a mapping of infinite order with one or
two fixed points. In contrast we show that any compact fractafold
based on the level-3 Sierpiński gasket is topologically rigid.
Keywords:
classify homeomorphisms double cover sierpi ski gasket dimensions there unique homeomorphism mapping cell other cell prescribed mapping boundary points homeomorphism either permutation finite number topological cells mapping infinite order fixed points contrast compact fractafold based level sierpi ski gasket topologically rigid
Affiliations des auteurs :
Ying Ying Chan 1 ; Robert S. Strichartz 2
@article{10_4064_fm209_2_5,
author = {Ying Ying Chan and Robert S. Strichartz},
title = {Homeomorphisms of fractafolds},
journal = {Fundamenta Mathematicae},
pages = {177--191},
publisher = {mathdoc},
volume = {209},
number = {2},
year = {2010},
doi = {10.4064/fm209-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-5/}
}
Ying Ying Chan; Robert S. Strichartz. Homeomorphisms of fractafolds. Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 177-191. doi: 10.4064/fm209-2-5
Cité par Sources :