Dimension of countable intersections of some sets arising
in expansions in non-integer bases
Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 157-176
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider expansions of real numbers in non-integer bases. These expansions are generated by $\beta $-shifts. We prove that some sets arising in metric number theory have the countable intersection property. This allows us to consider sets of reals that have common properties in a countable number of different (non-integer) bases. Some of the results are new even for integer bases.
Keywords:
consider expansions real numbers non integer bases these expansions generated beta shifts prove sets arising metric number theory have countable intersection property allows consider sets reals have common properties countable number different non integer bases results even integer bases
Affiliations des auteurs :
David Färm 1 ; Tomas Persson 2 ; Jörg Schmeling 3
@article{10_4064_fm209_2_4,
author = {David F\"arm and Tomas Persson and J\"org Schmeling},
title = {Dimension of countable intersections of some sets arising
in expansions in non-integer bases},
journal = {Fundamenta Mathematicae},
pages = {157--176},
publisher = {mathdoc},
volume = {209},
number = {2},
year = {2010},
doi = {10.4064/fm209-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-4/}
}
TY - JOUR AU - David Färm AU - Tomas Persson AU - Jörg Schmeling TI - Dimension of countable intersections of some sets arising in expansions in non-integer bases JO - Fundamenta Mathematicae PY - 2010 SP - 157 EP - 176 VL - 209 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-4/ DO - 10.4064/fm209-2-4 LA - en ID - 10_4064_fm209_2_4 ER -
%0 Journal Article %A David Färm %A Tomas Persson %A Jörg Schmeling %T Dimension of countable intersections of some sets arising in expansions in non-integer bases %J Fundamenta Mathematicae %D 2010 %P 157-176 %V 209 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-4/ %R 10.4064/fm209-2-4 %G en %F 10_4064_fm209_2_4
David Färm; Tomas Persson; Jörg Schmeling. Dimension of countable intersections of some sets arising in expansions in non-integer bases. Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 157-176. doi: 10.4064/fm209-2-4
Cité par Sources :